Effets secondaires des chimiothérapies : une molécule française prometteuse pour lutter contre les neuropathies périphériques, dont souffrent près de 90 % des patients

Source: The Conversation – in French – By Laurence Lafanechère, Directrice de recherche CNRS, Université Grenoble Alpes (UGA)

Une nouvelle molécule capable de protéger les neurones des effets toxiques de la chimiothérapie, tout en renforçant l’efficacité de certains traitements anticancéreux, a été découverte et offre des résultats prometteurs chez l’animal. Une start-up a été créée pour continuer son développement et mener des études chez l’humain.


Picotements dans les mains et les pieds, brûlures, douleurs, perte de sensibilité, sensation d’engourdissement… Les neuropathies périphériques figurent parmi les effets secondaires les plus fréquents de la chimiothérapie, touchant jusqu’à 90 % des patients pour certains traitements. Leur sévérité conduit parfois les praticiens à ajuster, voire à réduire les doses de chimiothérapie, ce qui peut en diminuer l’efficacité.

Dans un cas sur quatre, ces atteintes nerveuses persistent des mois, voire des années après la fin du traitement. Elles rappellent alors chaque jour aux patients qu’ils ont eu un cancer – alors même que leurs cheveux ont repoussé et que les nausées ou la fatigue ont disparu. Aucun droit à l’oubli, même une fois la maladie vaincue

À ce jour, hormis le port de gants et de chaussons réfrigérants pendant les séances de chimiothérapie – une méthode pas toujours efficace et souvent désagréable –, aucun traitement préventif n’existe. Quelques médicaments palliatifs sont utilisés, pour atténuer la douleur, avec une efficacité modeste.

Notre équipe, en collaboration avec des chercheurs états-uniens et français, vient de franchir une étape importante avec la découverte d’un composé, baptisé Carba1, capable de protéger les neurones des effets toxiques de la chimiothérapie, tout en renforçant l’efficacité de certains traitements anticancéreux. Ces travaux viennent d’être publiés dans la revue Sciences Advances.

Une molécule, deux cibles

Carba1 appartient à la famille des carbazoles, une classe de molécules développée par les chercheurs du Centre d’études et de recherche sur le médicament de Normandie (CERMN), avec lesquels nous collaborons depuis plus de dix ans.

Nos travaux ont mis en évidence que Carba1 agit sur deux cibles principales.

Premièrement, Carba1 interagit avec la tubuline, la brique de base des microtubules. Selon les besoins de la cellule, ces briques peuvent s’assembler pour former soit des « câbles » capables de tirer et de séparer les chromosomes lors de la division cellulaire, soit des « rails » sur lesquels se déplacent des moteurs moléculaires transportant nutriments et organites comme les mitochondries, assurant ainsi la distribution de l’énergie et des ressources dans toute la cellule.

Ce système de transport est particulièrement essentiel dans les cellules nerveuses, dont les prolongements peuvent atteindre plus d’un mètre de longueur, par exemple les neurones qui partent du ganglion rachidien, près de la moelle épinière et vont innerver la peau des pieds. De nombreux médicaments anticancéreux, tels que le paclitaxel (Taxol) ou le docétaxel (Taxotère), ciblent déjà ces structures afin de bloquer la prolifération des cellules tumorales. Cependant, cette action n’est pas sans conséquence : les neurones, eux aussi dépendants des microtubules pour le transport de leurs constituants, en sont affectés, ce qui constitue l’une des causes majeures des neuropathies.

Nous avons montré que Carba1 modifie subtilement les microtubules : il perturbe leur extrémité, favorisant la liaison du paclitaxel. Cette interaction permet d’utiliser des doses plus faibles du médicament anticancéreux sans perte d’efficacité contre les tumeurs.

Mais ce n’est pas tout.

Des neurones plus résistants

Deuxièmement, en examinant plus en détail les propriétés de Carba1, nous avons découvert qu’il agit également sur un autre front : le métabolisme énergétique. Les neurones figurent parmi les cellules les plus gourmandes en énergie, et la défaillance bioénergétique est considérée comme l’un des principaux facteurs contribuant à la dégénérescence neuronale.

Nos résultats montrent que Carba1 active directement une enzyme clé, la nicotinamide phosphoribosyltransférase (NAMPT), qui relance la production de NAD⁺, molécule cruciale pour la génération d’énergie. Résultat : les neurones deviennent plus résistants au stress métabolique et survivent mieux aux agressions des agents chimiothérapeutiques.

Nous avons confirmé l’effet neuroprotecteur de Carba1 sur des cultures de neurones exposées à trois agents chimiothérapeutiques connus pour induire une neuropathie, via des mécanismes différents : le paclitaxel (ciblant les microtubules), le cisplatine (agent alkylant) et le bortézomib (inhibiteur du protéasome).

Contrairement aux cultures témoins où s’étendent des prolongements neuritiques lisses et vigoureux, dans les cultures traitées par ces médicaments, les prolongements présentent un aspect fragmenté, caractéristique d’un processus de dégénérescence. En revanche, lorsque les neurones sont exposés à ces mêmes traitements en présence de Carba1, leurs prolongements demeurent intacts, indiscernables de ceux des cultures non traitées. Ces observations indiquent que Carba1 protège efficacement les neurones de la dégénérescence induite par ces agents neurotoxiques.

Des résultats encourageants chez l’animal

Pour aller plus loin, nous avons testé Carba1 dans un modèle de neuropathie chez le rat traité au paclitaxel, développé par le Dr David Balayssac à Clermont-Ferrand (unité Neurodol). Ce traitement provoque une hypersensibilité cutanée : les rats réagissent à des pressions très faibles sur leurs pattes, un signe de douleur neuropathique. L’analyse histologique montre également une diminution des terminaisons nerveuses intra-épidermiques, tandis que le sang présente des taux élevés de NfL (chaîne légère de neurofilaments), marqueur de dégénérescence neuronale.

Lorsque Carba1 est administré avant et pendant le traitement, ces altérations disparaissent : les nerfs restent intacts, la concentration de NfL demeure normale et la sensibilité cutanée des animaux reste inchangée. Autrement dit, Carba1 protège les neurones de la dégénérescence induite par le paclitaxel. Signe rassurant, Carba1 n’impacte pas la croissance tumorale.

Comme les neurones, les cellules cancéreuses consomment beaucoup d’énergie. Il était donc essentiel de vérifier que Carba1 n’avait pas d’effet pro-tumoral et qu’il ne diminuait pas l’efficacité du paclitaxel. Pour le savoir, nous avons administré Carba1 seul, ou en association avec une dose thérapeutique de paclitaxel, à des souris porteuses de tumeurs greffées. Les résultats sont clairs : Carba1 n’a provoqué aucun effet toxique, ni altéré la santé générale des animaux, ni stimulé la croissance des tumeurs. Il n’interfère pas non plus avec l’action anticancéreuse du paclitaxel.

Une nouvelle voie vers des traitements mieux tolérés

Cette découverte est particulièrement enthousiasmante, car elle combine deux effets rarement réunis :

  • renforcer l’efficacité des médicaments anticancéreux de la famille du paclitaxel (taxanes) en permettant d’en réduire la dose ;

  • préserver les nerfs et améliorer la qualité de vie des patients pendant et après le traitement.

Avant d’envisager un essai clinique chez l’humain, plusieurs étapes restent indispensables. Il faut d’abord confirmer la sécurité de Carba1 chez l’animal, déterminer la dose minimale efficace et la dose maximale tolérée. Enfin, il sera nécessaire de mettre au point une formulation adaptée à une administration chez l’humain.

Cette mission incombe désormais à la start-up Saxol, issue de cette recherche, dont je suis l’une des cofondatrices. Si ces étapes – qui devraient s’étendre sur cinq ans au moins, selon les défis techniques et les levées de fonds – se déroulent comme prévu, Carba1 pourrait devenir le premier traitement préventif contre la neuropathie induite par la chimiothérapie – une avancée majeure qui pourrait transformer la façon dont les patients vivent leur traitement anticancéreux.

Carba1 incarne une innovation à l’interface de la chimie, de la neurobiologie et de l’oncologie. En associant protection neuronale et renforcement de l’efficacité thérapeutique, cette petite molécule pourrait, à terme, réconcilier traitement du cancer et qualité de vie. Pour les millions de patients confrontés à la double épreuve du cancer et de la douleur neuropathique, elle représente un espoir concret et prometteur.

The Conversation

Laurence Lafanechère est cofondatrice et conseillère scientifique de la Société SAXOL.
Pour mener ses recherches elle a reçu des financements de :
Société d’Accélération de Transfert de Technologies Linksium Maturation grant CM210005, (L.L)
Prématuration CNRS (LL)
Ligue contre le Cancer Allier et Isère (LL, C.T, D.B.)
Ruban Rose (LL)

ref. Effets secondaires des chimiothérapies : une molécule française prometteuse pour lutter contre les neuropathies périphériques, dont souffrent près de 90 % des patients – https://theconversation.com/effets-secondaires-des-chimiotherapies-une-molecule-francaise-prometteuse-pour-lutter-contre-les-neuropathies-peripheriques-dont-souffrent-pres-de-90-des-patients-269727