On peut réactiver un souvenir ou le faire disparaître de façon réversible – chez la souris

Source: The Conversation – France in French (2) – By Jean-Christophe Cassel, Professeur de neurosciences à l’Université de Strasbourg, Université de Strasbourg

Comprendre les mécanismes qui régissent notre mémoire à l’échelle des neurones est un enjeu de taille. Nikolett Emmert/Unsplash, CC BY

Après avoir démontré que les souvenirs s’inscrivent de façon matérielle dans notre cerveau, les scientifiques s’attèlent à la tâche de réactiver des souvenirs attaqués par des maladies neurodégénératives chez des souris.


Chacun sait ce qu’est un souvenir : un événement, une odeur, une sensation de notre passé que nous pouvons rappeler. Mais à quoi ressemble-t-il dans notre cerveau ?

Il est porté par des groupes de neurones interconnectés. À cette échelle, le support du souvenir est appelé « engramme ». Ce mot désigne le substrat matériel constitué par un réseau spécifique de neurones, dont les interconnexions se sont renforcées durablement lors de la mémorisation. Ainsi, quand on se souvient, une partie de ce réseau est réactivée. Les recherches récentes montrent comment se fait cette réactivation et comment on peut la contrôler de façon réversible chez la souris.

Mieux comprendre les mécanismes cellulaires qui sous-tendent nos souvenirs est un enjeu de taille, car nombre de maladies neurodégénératives et de traumatismes altèrent notre mémoire, non seulement en perturbant l’accès aux images de notre passé, mais aussi en s’attaquant directement au matériel biologique dans lequel ces images sont fixées.

Comment les souvenirs s’inscrivent dans le cerveau

L’idée que nos souvenirs ne sont pas quelque chose d’immatériel mais ont un support physique est ancienne. Déjà Platon imaginait que l’âme recèle des tablettes de cire dans lesquelles se grave ce que nous voulons retenir.

Mais il a fallu bien longtemps pour affiner cette intuition, puis pour la démontrer expérimentalement. À la fin du XIXe siècle, l’Espagnol Santiago Ramon y Cajal pense que les connexions entre certains neurones sont renforcées lors d’activations répétées accompagnant l’apprentissage – ainsi se formerait le souvenir.

Dans les années 1960, ces spéculations commencent à trouver une assise expérimentale. C’est d’abord chez un mollusque marin, l’aplysie, qu’on les démontre. Lorsqu’on stimule mécaniquement une partie de son dos, il rétracte ses branchies pour les protéger. Mais si cette stimulation est répétée quelques fois, le réflexe s’atténue durablement. Cette adaptation repose sur une réduction prolongée de l’excitabilité synaptique et du nombre de synapses dans le circuit moteur qui pilote la rétraction.

À l’inverse, une sensibilisation de ce réflexe, déclenchée par une stimulation nociceptive (douleur déclenchée par une agression de l’organisme, ndlr) appliquée sur la queue de l’animal, provoque une augmentation persistante de l’excitabilité synaptique et fait apparaître des connexions additionnelles. En 1973, un mécanisme du même type est décrit dans l’hippocampe du lapin – il est nommé « potentialisation à long terme ».

Pour désigner l’encodage permanent dans le substrat cérébral des éléments d’une expérience vécue, rappelons la formule laconique de Carla Shatz :

« Neurons that fire together, wire together » (Les neurones qui se coactivent s’interconnectent.) Carla Shatz, 1992, « Scientific American »

Observer directement les souvenirs en « allumant » les neurones interconnectés

Si les neurones coactivés au cours de l’encodage se réactivent pour permettre le rappel d’un souvenir (Figure 1), on doit pouvoir prouver que leur réactivation accompagne le rappel du souvenir et montrer que leur destruction l’empêche.

Pour ce qui est de la réactivation lors du rappel, le groupe de Mark Mayford a appris à des souris à reconnaître un signal sonore annonçant un choc électrique désagréable. Lorsque plus tard, les souris réentendent ce son, leur immobilité traduit la peur, donc une réactivation du souvenir de ce qu’annonce le son.

Pour imager les neurones qui portent la réactivation du souvenir, voici la procédure : avant l’apprentissage, on infecte des cellules de l’amygdale
– une structure cruciale pour les émotions, dont la peur – avec un virus qui permettra de rendre fluorescents les neurones activés pendant l’apprentissage. Ultérieurement, une fois que ces souris ont réentendu le son, elles sont mises à mort et, à l’aide d’un second marquage, on visualise les neurones qui se sont activés pendant ce rappel. Du coup, les neurones doublement marqués auront été activés pendant l’apprentissage et réactivés pendant le rappel. Or, Mayford et ses collègues constatent qu’il y a bien eu augmentation du double marquage chez les souris ayant eu peur pendant le rappel (comparativement aux différentes conditions de contrôle).

Pour ce qui est de la destruction des neurones qui aboutissent à l’anéantissement du souvenir, on utilisera également une stratégie reposant sur une infection virale des neurones de l’amygdale, mais cette fois, les neurones activés pendant l’apprentissage seront tués avant le rappel à l’aide d’une toxine. De cette manière, le groupe de Paul Frankland a pu montrer qu’une destruction de ces neurones faisait disparaître toute réaction de peur chez les souris car, du fait de la mort des neurones « souvenir », elles ont oublié la signification du signal sonore.

Comment réactiver un souvenir ou le faire disparaître de façon réversible ?

Aujourd’hui, les chercheurs ont peaufiné cette démonstration en parvenant à manipuler ponctuellement et réversiblement l’engramme (le réseau de neurones souvenirs) pour induire l’expression ou la disparition d’un souvenir.

C’est là qu’intervient une technique relativement récente : l’optogénétique. Elle permet de contrôler (soit activer, soit inhiber) avec une grande précision l’activité de certains neurones en les exposant à de la lumière par l’intermédiaire d’une fibre optique plongée dans une région d’intérêt du cerveau. Il suffit pour cela de rendre ces neurones sensibles à une longueur d’onde lumineuse par introduction de gènes codant pour des protéines photosensibles. De plus, il est possible de faire dépendre l’expression de ces gènes de l’activation même des neurones.

C’est ainsi que le groupe de Susumu Tonegawa a pu montrer, chez la souris, qu’après l’apprentissage d’un danger lié à un contexte donné, l’activation par la lumière des neurones ayant participé à l’apprentissage induisait un comportement de peur, donc un rappel… et cela dans un contexte sans danger bien connu de la souris, et sans rapport avec celui de l’apprentissage ! Par ailleurs, lorsque ces neurones étaient inhibés par la lumière dans le contexte dangereux, la souris ne manifestait plus aucune peur.

Implanter un faux souvenir

Il y a même mieux, puisque le groupe de Tonegawa a aussi réussi à implanter un faux souvenir dans la mémoire des souris.

Les souris ont d’abord encodé un premier contexte parfaitement neutre. Les neurones ayant été activés pendant l’encodage de ce contexte ont exprimé une protéine photoactivable avec de la lumière bleue. Les chercheurs ont ensuite exposé ces souris à un autre contexte, celui-là désagréable, tout en activant conjointement la trace du premier avec de la lumière bleue.

Lorsque les souris étaient ultérieurement réexposées au premier contexte (pourtant neutre, à la base), elles se sont mises à le craindre.

Enfin, dans un modèle murin de maladie d’Alzheimer, le groupe de Tonegawa est même allé jusqu’à ressusciter un souvenir le temps d’une photoactivation d’un engramme d’abord rendu photoactivable mais ultérieurement oublié, alors même que celui-ci était invalidé du fait de l’évolution d’un processus neurodégénératif.

Pour l’heure, ces résultats, bien que spectaculaires, et avec lesquels s’alignent les données produites par d’autres groupes de recherche, se limitent à des mémoires simples qui pilotent des comportements simples dans des modèles animaux raisonnablement complexes.

Reste à savoir si les travaux menés sur ces modèles sont généralisables sans nuances à l’humain, et par quel mécanisme un motif d’activation neuronale peut générer des images et des impressions passées dans une phénoménologie consciente actuelle.


Cet article est publié dans le cadre de la Fête de la science (qui a eu lieu du 3 au 13 octobre 2025), dont The Conversation France est partenaire. Cette nouvelle édition porte sur la thématique « Intelligence(s) ». Retrouvez tous les événements de votre région sur le site Fetedelascience.fr.

The Conversation

Jean-Christophe Cassel a reçu des financements de l’ANR. ANR-14-CE13-0029-01
ANR-23-CE37-0012-02

ref. On peut réactiver un souvenir ou le faire disparaître de façon réversible – chez la souris – https://theconversation.com/on-peut-reactiver-un-souvenir-ou-le-faire-disparaitre-de-facon-reversible-chez-la-souris-267656