Source: The Conversation – France (in French) – By Céleste Mouth, Doctorante (PhD Student), Université Le Havre Normandie

Des rivières aux océans, le plastique transite par les estuaires, des zones vitales pour la biodiversité, mais fragiles. Pour mesurer son impact, une recherche franco-canadienne s’appuie sur un minuscule crustacé, « Eurytemora affinis », véritable sentinelle écologique qui doit aider à mieux comprendre les effets de la pollution par les micro et nanoplastiques.
Le plastique est un polluant omniprésent. Dans les emballages, véhicules, textiles ou cosmétiques, il fait partie intégrante de notre quotidien. Sa production, qui a explosé depuis les années 1950, dépasse aujourd’hui 400 millions de tonnes par an.
Cette surproduction massive, combinée à une gestion insuffisante des déchets, entraîne une accumulation durable dans l’environnement. Faiblement biodégradable, le plastique persiste pendant des décennies et se retrouve désormais dans tous les milieux : air, sols, eaux douces, océans, jusqu’aux pôles et aux abysses.
Face à cette pollution mondiale, la recherche s’efforce de mieux quantifier les plastiques, d’en comprendre la dispersion et d’évaluer leurs effets sur les écosystèmes et les organismes. Dans un nouveau projet de recherche doctorale que nous menons, cette question est abordée en examinant deux estuaires : celui de la Seine, en France, et celui du Saint-Laurent au Québec.
L’enjeu : évaluer le niveau de contamination en micro et nanoplastiques de ces estuaires en s’intéressant notamment aux effets du plastique sur un petit crustacé méconnu, un minuscule copépode baptisé Eurytemora affinis qui constitue une espèce sentinelle précieuse.
À lire aussi :
Recycler les plastiques pour protéger les océans, une illusion face à la surproduction ?
Les estuaires, des écosystèmes sensibles
La plupart des études se concentrent sur les océans : les milieux d’eau douce et notamment les fleuves et estuaires restent encore largement sous-explorés.
Pourtant, environ 80 % des plastiques marins proviennent de sources terrestres, transportés par les rivières et déversés en mer via les estuaires. Situés à proximité de zones densément peuplées ou industrialisées, les estuaires sont donc directement exposés aux débris plastiques issus des activités humaines.
Mais les réduire à leur seule vulnérabilité serait une erreur : les estuaires sont parmi les milieux les plus riches et productifs de la planète. Ils abritent une biodiversité remarquable, servent de nurseries pour de nombreuses espèces, filtrent naturellement l’eau et jouent un rôle essentiel dans les cycles biogéochimiques.
Ils offrent aussi de nombreux services écosystémiques aux sociétés humaines : alimentation à travers la pêche, régulation de la qualité de l’eau, atténuation des crues, protection contre l’érosion côtière, etc.
Leur position géographique, en revanche, à l’interface entre terre et mer, les rend particulièrement sensibles aux pressions anthropiques. Face à l’augmentation de la pollution plastique, il est urgent de mieux comprendre comment ces écosystèmes réagissent, et quels organismes sont en première ligne.
« Eurytemora affinis », minuscule gardien de l’équilibre
Parmi les nombreuses espèces vivant dans ces milieux sous pression, certaines occupent une place centrale dans leur équilibre écologique. C’est le cas d’un petit crustacé d’environ un millimètre : Eurytemora affinis.

Caroline Lamontagne, Fourni par l’auteur
Très abondant dans les estuaires de l’hémisphère Nord, il constitue un maillon clé du réseau trophique, assurant le transfert d’énergie entre le phytoplancton et les organismes de niveaux supérieurs. Son atout majeur ? Une capacité d’adaptation exceptionnelle. Il tolère de très fortes variations environnementales, ce qui lui permet de coloniser de nombreux habitats.
Mais E. affinis est aussi un excellent bio-indicateur de l’état de santé des estuaires. En effet, certaines espèces, dites « sentinelles », réagissent rapidement aux perturbations, permettant d’anticiper les effets de la pollution : c’est le principe de la biosurveillance. Grâce à sa sensibilité aux polluants, son cycle de vie court, sa densité élevée et la possibilité de l’élever en laboratoire, E. affinis est un modèle idéal en écotoxicologie. Il permet d’étudier à la fois l’exposition, les effets biologiques et les mécanismes de réponse face aux contaminants.

Sentinel Hub, CC BY
Ce qui rend l’étude d’E. affinis particulièrement intéressante, c’est qu’il ne s’agit pas d’une seule espèce, mais d’un complexe d’espèces cryptiques (c’est-à-dire, dont il est impossible de distinguer les différentes espèces à l’œil nu sans analyse génétique).
Ces différences pourraient influencer la façon dont chaque population réagit aux polluants. Ces variations ont jusque-là été peu explorées. Et c’est justement tout l’enjeu : mieux les comprendre pourrait nous aider à identifier les espèces et leurs populations les plus vulnérables pour mieux protéger les écosystèmes qu’elles habitent.
Deux de ces lignées vivent dans les estuaires de la Seine (France) et du Saint-Laurent (Canada). Ce sont précisément ces deux populations transatlantiques qui sont au cœur de ce travail de recherche.
Microplastiques, mais maxi dangers
Une fois libérés dans l’environnement, les plastiques se dégradent progressivement sous l’effet de processus physiques, chimiques et biologiques. Ils se fragmentent alors en particules de plus petite taille, dites microplastiques (de 1 micromètre à 5 millimètres) et nanoplastiques (de 1 nanomètre à 1 micromètre) secondaires.
À cela s’ajoutent aussi les micro et nanoplastiques (MNPs) dits primaires, fabriqués directement à ces tailles et involontairement libérés dans l’environnement, par exemple via le lavage des vêtements en fibres synthétiques.
À lire aussi :
Pourquoi les déchets plastiques ne se dégradent-ils jamais vraiment ?
Malgré leur petite taille, ces particules représentent une menace majeure. Leurs propriétés physiques les rendent extrêmement résistants aux processus naturels de décomposition, ce qui leur permet de persister longtemps dans l’environnement.
Leur taille les rend faciles à ingérer par une grande variété d’organismes, du zooplancton aux mammifères marins. Une fois ingérées, ces particules peuvent provoquer des obstructions physiques, réduire l’absorption des nutriments, ou – dans le cas des nanoplastiques – pénétrer dans la circulation sanguine, entraînant une cascade d’effets biologiques néfastes.
Leurs dangers tiennent également du « cheval de Troie » : leur surface adsorbe d’autres polluants hydrophobes, comme les hydrocarbures aromatiques polycycliques (HAP), les polychlorobiphényles (PCB) ou les métaux lourds. Une fois ingérés, ces contaminants peuvent alors être rejetées dans le tube digestif de l’organisme et avoir des effets toxiques.
Dans ce contexte, il est crucial d’étudier les effets des micro et nanoplastiques dans les estuaires à travers un modèle écologique clé comme E. affinis pour comprendre les effets de cette pollution émergente sur la biodiversité.
À lire aussi :
De l’eau douce à l’eau salée : les fascinantes stratégies d’adaptation de la crevette blanche
Avec Plasticop, mieux comprendre la vulnérabilité des copépodes aux plastiques
Ce projet doctoral Plasticop, co-dirigé par le laboratoire Stress Environnementaux et BIOSurveillance des milieux aquatiques au Havre (France) et l’Institut des sciences de la mer au Québec (Canada), s’intéresse ainsi à deux lignées du copépode, dont deux populations d’E. affinis vivant dans les estuaires de la Seine et du Saint-Laurent.
Il se structure autour de trois grands axes :
-
Le premier consiste à évaluer l’état de contamination en MNPs dans ces deux estuaires, en analysant trois compartiments : l’eau, les sédiments et les copépodes eux-mêmes.
-
Le deuxième vise à exposer en laboratoire ces populations naturelles aux types de plastiques identifiés lors du premier volet et d’en observer les effets. L’objectif est d’évaluer non seulement les impacts à court terme (sur la survie, la croissance ou la reproduction), mais aussi les effets à long terme à travers une étude sur quatre générations successives.
-
Enfin, le troisième axe explore l’influence du réchauffement climatique sur la bioaccumulation de ces particules plastiques, c’est-à-dire leur capacité à s’accumuler progressivement dans les tissus des organismes.
En combinant ces approches, cette recherche vise à mieux comprendre la résilience de ce complexe d’espèces clés face à des pressions environnementales multiples, et à anticiper l’évolution de ces écosystèmes fragiles.
Ce n’est que le début de l’aventure : les premiers résultats sont attendus dans les trois prochaines années… et nous sommes impatients de les partager.
Cet article est publié dans le cadre du festival Sur les épaules des géants, qui se déroule du 25 au 27 septembre 2025 au Havre (Seine-Maritime), dont The Conversation est partenaire. Joëlle Forget-Leray et Céleste Mouth seront présentes pour un débat après la projection, le 26 septembre à 13 h 45, du film Plastic People.
![]()
Céleste Mouth a reçu des financements dans le cadre du projet PiA 4 ExcellencEs – Polycampus LH 2020 / France 2030 / ANR 23 EXES 0011
Gesche Winkler a reçu des financements du conseil de recherches en sciences naturelles et en génie du Canada (CRSNG), de l’APOGÉE Canada “Transforming Climate Change” et du regroupement stratégique “Québec-Océan”.
Joëlle Forget-Leray a reçu des financements dans le cadre du projet PiA 4 ExcellencEs – Polycampus LH 2020 / France 2030 / ANR 23 EXES 0011
– ref. Et si un minuscule crustacé aidait à mieux comprendre les effets du plastique dans les estuaires ? – https://theconversation.com/et-si-un-minuscule-crustace-aidait-a-mieux-comprendre-les-effets-du-plastique-dans-les-estuaires-265111
