Source: – By Philippe Arvers, Médecin addictologue et tabacologue, Université Grenoble Alpes (UGA)
Porte d’entrée dans le tabagisme ? JeepersMedia, CC BY
La cigarette électronique – ou vapoteur personnel (VP) – risque-t-elle de devenir une étape d’initiation pour les jeunes, avant le passage à la cigarette classique ? À vrai dire, le public ciblé est plutôt constitué de fumeurs de tabac qui veulent arrêter. Il y a donc essentiellement des ex-fumeurs et des vapo-fumeurs qui vapotent, cherchant une porte de sortie du tabagisme… Quant aux jeunes, la vente dans les boutiques en France est interdite aux mineurs, et si certains l’expérimentent (recherche de sensation, recherche de nouveauté), peu continuent à vapoter occasionnellement ou régulièrement.
Une étude américaine vient d’être publiée en avril 2017, effectuée en 2014 auprès de 3 657 étudiants (âge moyen : 18,5 ans). Ils ont à nouveau été interrogés en 2015 sur leur statut de fumeur ou vapoteur (non-fumeur, vapoteur, fumeur de tabac, ou vapo-fumeur). Même si les effectifs sont faibles, 153 étudiants déclarent en 2014 vapoter (et ne pas fumer de tabac). Un an plus tard, parmi eux, près d’1 sur 4 ne vapote plus (et ne fume pas) et 8 (5,2 %) ne vapotent plus et fument du tabac. Près d’1 sur 2 continue à vapoter (46,4 %) et près d’1 sur 4 vapote et fume du tabac.
Cette étude a ses limites en termes d’effectifs, et on ne dispose que d’un suivi à court terme, sur une année. Il faut mettre en place des enquêtes longitudinales avec des effectifs de départ importants, en raison du taux d’attrition (sujets perdus de vue) au fur et à mesure des années de passation du questionnaire.
Une étude pilotée par le docteur Ivan Berlin est d’ailleurs en cours à l’Hôpital de la Pitié-Salpêtrière : il va recruter 700 fumeurs âgés de plus de 18 ans, et ils seront répartis en quatre groupes : des comprimés (de varénicline, médicament indiqué dans le sevrage tabagique, remboursé par la sécurité sociale ou un placebo) et une cigarette électronique (avec 12mg/ml de nicotine ou 0 mg/ml). L’objectif sera de comparer le nombre d’arrêts du tabac dans chacun des groupes.
« La vape ringardise le tabac »
En tout cas, l’étude publiée dans Addictive Behaviors ne démontre pas que la vape est le mode d’entrée dans le tabagisme, alors que l’on voudrait nous faire croire que de voir vapoter va donner envie de fumer du tabac et renormalise ainsi l’image du tabagisme. D’ailleurs, parmi les jeunes qui vapotent, combien auraient commencé le tabac de toute façon, ou plus tôt ?
Dans ce cas, la toxicité du tabac est certaine, et un fumeur sur deux en mourra dans le futur. Alors que les modèles de deuxième et de troisième génération de cigarette électronique, fabriqués et distribués en France, respectent des normes Afnor établies en 2016 qui garantissent des produits sûrs pour les utilisateurs. La nicotine peut être présente avec des dosages maximums à 19,99 mg/ml. Elle peut aussi en être absente.
« Quand on interroge ces collégiens et lycéens, on s’aperçoit que la vape ringardise le tabac », a souligné le Pr Bertrand Dautzenberg lors du Premier sommet de la vape, tenu à Paris en 2016. Avant, a-t-il souligné, le tabac n’avait pas de concurrent. La vape, qui plus est, est un concurrent moins nocif.
Les data visualisations de cet article ont été réalisées par Marie Simon.
Philippe Arvers a reçu des financements de Lundbek SAS, PierreFabre Médicament, RB Pharmaceuticals France, Novartis Santé Familiale SAS.
Lorsque j’aborde la question des cigarettes roulées avec mes patients, c’est à chaque fois la même déconvenue : ils sont persuadés qu’elles sont moins toxiques que les autres cigarettes, celles achetées chez le buraliste. Or cela est faux, comme le montre la visualisation ci-dessous (jouez avec les flèches pour un maximum d’informations).
Certes, elles leur reviennent moins chères à l’unité comme on peut le voir ci-dessous. La différence est imputable aux taxes moins élevées pour les roulées, ce qui en train d’être modifié en France, avec une augmentation de 15 % des taxes appliquées au tabac à rouler. En effet, en raison du prix moindre, c’est un produit d’entrée dans le tabagisme chez les jeunes (qui pourront aussi y ajouter du cannabis, de l’herbe ou de la résine), et également un produit préféré par les précaires.
Les data visualisations de cet article ont été réalisées par Marie Simon.
Philippe Arvers a reçu des financements de Lundbek SAS, PierreFabre Médicament, RB Pharmaceuticals France, Novartis Santé Familiale SAS.
L’initiation précoce au tabagisme représente un souci majeur en santé publique. Elle prédit en effet une plus forte dépendance et une plus faible capacité à cesser de fumer. Les sujets ayant commencé à fumer avant l’âge de 16 ans ont une probabilité deux fois plus élevée que ceux qui ont commencé à fumer après cet âge de demeurer fumeur à l’âge de 60 ans.
En 2008, nous avons effectué une analyse secondaire des études Inserm (1993) et ESPAD (1999, 2003 et 2007) sur les jeunes âgés de 15-16 ans. Les « fumeurs précoces », que nous avons définis comme des personnes ayant commencé à fumer avant l’âge de 12 ans, ont tendance à avoir une consommation d’autres substances plus importantes.
En prenant en compte simultanément ces différents critères, les conduites addictives associées au tabagisme restent toutes significatives dans l’analyse (modèle de régression logistique). Ainsi, la consommation précoce de tabac est associée à :
une consommation de plus de 10 cigarettes par jour (risque augmenté de 55 %)
une consommation précoce de cannabis (risque multiplié par 4)
une expérimentation d’autres drogues illicites que le cannabis (risque augmenté de 31 %)
une consommation précoce d’alcool (risque multiplié par 3)
des ivresses précoces (risque augmenté de 43 %).
Mortalité augmentée, risque accru de maladies
La précocité de l’initiation est également synonyme de dégâts amplifiés sur la santé de ces fumeurs… Une étude publiée en 2017 a analysé les données de la National Health Interview Survey (de 1997 à 2005) qui portait sur plus de 90 000 sujets âgés de 30 ans ou plus, fumeurs ou anciens fumeurs. Parmi eux, 7,3 % avaient commencé à fumer régulièrement avant l’âge de 13 ans.
Cette étude montre que, pour ceux qui fument actuellement, la précocité de consommation de tabac (ici, avant 13 ans) augmente le risque de développer :
une maladie cardio-vasculaire ou métabolique (risque augmenté de 67 %)
une maladie pulmonaire (risque augmenté de 79 %)
un cancer lié au tabagisme (risque multiplié par 2)
De plus, la mortalité toutes causes confondues est augmentée de 18 % parmi ces fumeurs « précoces ».
Cette étude montre aussi – ce qui est important – que, pour ceux qui ne fument plus, la précocité de consommation de tabac (ici, avant 13 ans) augmente le risque de développer :
une maladie cardio-vasculaire ou métabolique (risque augmenté de 38 %)
une maladie pulmonaire (risque augmenté de 89 %)
un cancer lié au tabagisme (risque augmenté de 44 %)
De plus, la mortalité toutes causes confondues est augmentée de 19 % parmi ces anciens fumeurs « précoces ».
Il est donc important de retarder l’initiation au tabagisme, tout comme l’initiation à l’alcool ou au cannabis.
Les data visualisations de cet article ont été réalisées par Marie Simon.
Philippe Arvers a reçu des financements de Lundbek SAS, PierreFabre Médicament, RB Pharmaceuticals France, Novartis Santé Familiale SAS.
Source: – By Nadir Altinok, Maître de conférences en économie, Université de Lorraine
Ecole en Chinesalinger/Pixabay
Depuis 1964, la plupart des pays développés participent à des tests en mathématiques et lecture de leurs élèves de primaire et collège. Très récemment, les résultats internationaux de l’enquête PIRLS (Programme international de recherche sur la lecture) ont montré que les élèves français avaient une performance relativement faible : 511 points contre plus de 560 points pour un pays comme l’Irlande.
Non seulement le niveau en lecture des élèves français de primaire est faible, mais il a surtout tendance à baisser dans le temps : il est passé de 525 à 511 points entre 2001 et 2016. La faible performance de la France est confirmée dans la plupart des enquêtes comme celle organisée par l’OCDE (Organisation de coopération et de développement économiques), appelée PISA (Programme international pour le suivi des acquis des élèves).
En quoi cette faible performance peut-elle avoir un impact sur l’économie ? Il semble à première vue évident qu’une faible performance en lecture et en mathématiques puisse avoir un impact sur la productivité des travailleurs (c’est-à-dire leur capacité à travailler vite et mieux). Les travaux d’économistes comme Eric Hanushek le prouvent : améliorer les compétences des travailleurs permet d’augmenter leur productivité ainsi que leurs salaires. Cependant, cela peut-il aussi influencer l’économie dans sa globalité ? C’est le dilemme classique analysé par les économistes : les conséquences sur les individus (ce que l’on appelle le “micro”) peuvent-elles avoir un impact sur l’économie globalement (ce qui s’appelle le “macro”) ?
Dans de récents travaux, nous collectons ainsi les résultats issus de toutes les enquêtes sur les compétences des élèves afin d’obtenir un indice mondial sur la qualité de l’éducation (appelé indice IQE). En analysant l’impact de cet indice sur la croissance, il en ressort une relation clairement positive.
Ce graphique présente une relation entre la qualité des systèmes éducatifs et la croissance économique d’environ 100 pays sur une longue période (1960-2010). Il en ressort une relation positive assez explicite : plus les systèmes éducatifs sont de qualité (indicateur IQE), plus les pays connaissent un développement économique important (indicateur TCA).
Nous trouvons ainsi qu’investir dans la qualité de l’éducation n’est pas seulement rentable pour les individus, mais aussi pour les pays. En comparant la qualité des systèmes éducatifs entre les différents pays du monde, il en ressort que les pays avec les meilleurs systèmes éducatifs (comme le Japon ou la Corée du Sud) ont une croissance économique plus forte que d’autres pays (comme la France). De façon plus nette, la faible croissance dans les pays d’Afrique subsaharienne peut être expliquée en grande partie par la faible qualité de ses écoles, même si d’autres facteurs peuvent entre en jeu.
Que pouvons-nous faire pour remédier à cette moindre croissance ? Assurément, augmenter la performance des systèmes éducatifs est le facteur clé pour les décennies à venir. Les recherches futures doivent ainsi s’axer sur les déterminants de la qualité des systèmes éducatifs. C’est un défi majeur pour tous les pays comme la France où les budgets sont restreints et où l’on doit faire « mieux » avec « moins ».
La data visualisation de cet article a été réalisée par Raphaël Da Silva.
Nadir Altinok ne travaille pas, ne conseille pas, ne possède pas de parts, ne reçoit pas de fonds d’une organisation qui pourrait tirer profit de cet article, et n’a déclaré aucune autre affiliation que son organisme de recherche.
Source: – By Sebastien Bourdin, Professeur de Géographie économique, Titulaire de la Chaire d’excellence européenne "Economie Circulaire et Territoires", EM Normandie
Migrations urbaines.Photo by Callum Chapman on UnsplashDR.
Cet article est republié dans le cadre de l’initiative « Quelle est votre Europe ? » dont The Conversation France est partenaire. Retrouvez toutes les informations, débats et les événements de votre région sur le site quelleestvotreeurope.fr
La population européenne est en mouvement : un nouveau rapport de l’Office des Statistiques de la Commission européenne (Eurostat) suggère où et pourquoi. Parmi les nombreuses analyses produites dans ce rapport, des tendances lourdes émergent : les jeunes partent du sud de l’Europe, en particulier de ses zones rurales, à la recherche de travail dans les zones urbaines du nord-ouest du continent, riche en emplois. Cela crée un « trou démographique » qui pourrait prédire un déclin démographique prolongé et continu dans certaines régions.
Âge médian de la population, par pays, Europe 2015. Les petits cercles figurent les régions les plus et les moins âgées du pays. Les régions capitales sont les grands cercles, le trait horizontal est la moyenne nationale. Philippe Roure/The Conversation France, CC BY
Age des villes, âge des champs
Le graphique ci-dessus fournit des indices sur ce mouvement. En ce qui concerne l’âge médian, on remarque très nettement que les zones rurales d’Europe ont tendance à avoir des populations plus vieilles, tandis que les capitales (marquées par des points bleus) sont en général plus jeunes que le pays auquel elles appartiennent. C’est en Grèce, dans la région d’Evrytania que la population est la plus âgée. Il s’agit d’une zone rurale où la migration des jeunes vers la capitale notamment a fait croître l’âge médian jusqu’à 53,6 ans. Entre 2006 et 2016, la Roumanie, la Lituanie, la Grèce et le Portugal ont tous vu leur âge moyen augmenter de plus de quatre ans. Cette hausse ne peut être simplement expliquée par une augmentation de l’espérance de vie. C’est également parce que les populations – surtout les jeunes – sont parties en grand nombre au début de leur carrière.
Au Portugal, ce mouvement s’est doublé d’une migration de retraités venus principalement d’Europe de l’Ouest qui sont venus s’installer dans le pays, créant ainsi une opportunité de développement territorial par la silver economy. Par ailleurs, combiné à un taux élevé de migration des jeunes, le faible taux de natalité accélère le vieillissement dans ces régions. Les taux de natalité bas constituent aujourd’hui un réel problème en Europe. En particulier, l’Espagne, l’Italie, la Slovaquie et la Grèce affichent les taux de natalité les plus faibles. Ceci est probablement un signe que les personnes choisissent d’avoir moins d’enfants pour des raisons économiques.
Néanmoins, il ne semble pas y avoir de lien automatique entre le vieillissement de la population et le taux de natalité. Alors que les populations lituanienne et roumaine ont vieilli rapidement, les deux pays ont un taux de natalité relativement élevé dans chaque région. Il est donc clair que la migration des jeunes est un facteur majeur. Dès lors, on comprend mieux les politiques d’attractivité actives menées par les métropoles européennes pour attirer cette population de jeunes diplômés à la recherche d’un travail bien rémunéré. Offrir de l’emploi à destination des jeunes doit être, de fait, une priorité en termes de politiques publiques.
Où vont les jeunes ?
À la lecture du rapport, nous n’obtenons pas de réponses claires car les augmentations de migrations observées dans certaines régions incluent également des arrivées de populations en provenance de l’extérieur de l’Union européenne. Ces dernières ont d’ailleurs augmenté en 2015 à la suite de la crise des migrants. Mais la carte ci-dessous montre que, dans l’Union européenne, l’Allemagne a été un centre de gravité. Ayant accepté 1,2 million de migrants en 2015, c’était le point d’arrivée le plus commun pour les déplacements des migrants cette année, bien que les plus grands réfugiés de la guerre en Syrie soient restés dans la Méditerranée orientale. Alors que l’acceptation des réfugiés a certainement été controversée dans de nombreux pays, il n’est pourtant pas automatique que l’arrivée des migrants cause des frictions intenses dans les communautés dans lesquelles ils arrivent.
Taux de migrations nettes (bilan migratoire : entrées – sorties) en Europe, 2015. Philippe Roure/The Conversation France, CC BY
Pour comprendre pourquoi ces mouvements majeurs ont été en partis bien accueillis comme en Allemagne, il faut comprendre le vide créé par les faibles taux de natalité de l’Europe. Alors que le taux de 2,1 naissances par femme est généralement considéré comme nécessaire pour maintenir une taille de population statique, dans la quasi-totalité des pays de l’UE, le taux de fécondité est en deçà de ce seuil. Le taux de natalité de l’Allemagne a été particulièrement faible compte tenu de son succès économique. Si la chancelière Angela Merkel a été si généreuse envers les réfugiés, c’est parce que la situation démographique allemande est alarmante et beaucoup d’Allemands en sont conscients. La population migrante constitue une main d’œuvre pour le pays et un bassin potentiel de consommation. L’image globale est que l’Allemagne a voulu accepter les migrants parce que l’économie peut les absorber.
Migrants du Vieux Continent
Toutefois, les effets de la crise des migrants masquent en réalité d’autres tendances importantes et en cours. Il est certainement vrai que la Suède et l’Allemagne ont reçu beaucoup de demandeurs d’asile pendant la crise européenne des migrants, mais, les deux pays ont aussi accueilli de nombreux migrants provenant du Vieux continent. En Allemagne, même si les Syriens constituaient la nationalité ayant le plus déménagé outre-Rhin en 2015, on retrouvait juste derrière la Roumanie et la Pologne.
Un aperçu rapide de la carte européenne de l’emploi, ci-dessous, explique pourquoi l’Europe du Nord-Ouest (et surtout l’Allemagne) sont des destinations attrayantes. Les taux d’emploi pour 2016 étaient beaucoup plus élevés en Allemagne, en Scandinavie et dans le sud du Royaume-Uni que partout ailleurs, avec des niveaux d’emploi particulièrement bas dans le sud de l’Espagne, le sud de l’Italie et la Grèce. Les niveaux globaux d’emploi reflètent en partie l’écart des régions les plus dynamiques économiquement (dans le Nord-ouest européen). Ces régions pourraient encore devenir des destinations de migration majeures à l’avenir, à condition que leur croissance économique se poursuive. Elle aurait alors pour conséquence de renforcer les déséquilibres socio-économiques dans l’Union européenne.
Taux d’emploi des 20-64 ans en Europe, 2015. Philippe Roure/The Conversation France, CC BY
L’espérance de vie, pas seulement une question de richesse
Tandis que l’Allemagne et d’autres pays du nord-ouest de l’Europe ont une plus grande résilience économique, ils n’ont pas nécessairement tous les avantages de leur côté.
À l’exception notable de la Norvège, les régions européennes avec une espérance de vie plus élevée se situent plutôt près de la Méditerranée. Il serait facile de suggérer qu’il n’y a pas de lien entre la richesse et la longévité. Les régions d’Espagne et d’Italie qui enregistrent l’espérance de vie la plus élevée pour les enfants nés aujourd’hui ne sont pas les plus pauvres de leurs pays. Il est encore clair que la longévité n’est pas une récompense directe découlant d’un revenu plus élevé.
Espérance de vie à la naissance en Europe, 2015. Philippe Roure/The Conversation France, CC BY
L’espérance de vie est néanmoins un domaine où aucun État européen ne peut se permettre d’être complaisant. Entre 2014 et 2015, l’espérance de vie à travers l’UE a effectivement chuté pour la première fois. La baisse est faible (0,3 an soit une espérance de vie estimée à 80,6 ans) mais doit servir d’avertissement. Les hypothèses selon lesquelles l’Europe, comme l’Occident d’une manière plus générale, est automatiquement vouée à améliorer ses conditions de vie et la santé de la population sont remises en cause.
Sebastien Bourdin ne travaille pas, ne conseille pas, ne possède pas de parts, ne reçoit pas de fonds d’une organisation qui pourrait tirer profit de cet article, et n’a déclaré aucune autre affiliation que son organisme de recherche.
Source: – By François Gu, Post-doctorant, Massachusetts Institute of Technology (MIT)
La Plaza Consistorial (Pampelune) pendant le « Chupinazo ».Fourni par l’auteur
La foule intimide voire terrifie certaines personnes. Ses mouvements peuvent conduire à des drames. C’est pourquoi mieux les comprendre est essentiel. Une nouvelle étude démontre que ces mouvements ne sont pas chaotiques comme on pourrait l’imaginer, mais, au contraire, quasi circulaires et périodiques.
Vous avez déjà vécu l’expérience d’être au milieu d’une foule compacte dans un espace confiné : sur les quais du métro bondés à l’heure de pointe, devant un magasin pour la sortie du dernier livre d’une autrice à succès, ou encore devant la scène lors d’un concert. Au-delà de l’inconfort suscité par les contacts physiques fréquents involontaires avec vos voisins, ces situations semblent incontrôlables et potentiellement dangereuses : on se sent comme contraint de bouger selon un mouvement dicté par l’impatience ou la pression exercée par les autres. Mais quelle est véritablement la nature des mouvements des individus au sein d’une foule dense ? Et peut-on en comprendre l’origine, notamment afin d’anticiper des drames ?
Si l’on se fie à notre intuition, ces mouvements semblent aléatoires et imprévisibles. Pourtant, notre étude, menée au sein de l’équipe de Denis Bartolo, professeur à l’ENS Lyon, et récemment publiée dans la revue Nature, révèle un phénomène contre-intuitif : au lieu d’un chaos désordonné, la foule bouge collectivement selon un mouvement régulier et spontané. Au-delà d’une densité critique de quatre personnes par mètre carré (imaginez-vous à quatre personnes dans une cabine de douche !), et sans consigne extérieure, la foule adopte spontanément un mouvement quasi circulaire et périodique.
Notre expérience : les fêtes de Pampelune et son « Chupinazo »
Notre premier défi, pour caractériser la dynamique des foules denses, était de taille : réaliser des expériences pour filmer, avec un bon angle de vue, la dynamique de centaines d’individus, tout en évitant les accidents. Il était donc évident qu’on ne pouvait pas faire cela dans notre laboratoire. L’opportunité idéale s’est présentée, quand Iker Zuriguel, professeur à l’Université de Navarre, nous a parlé des fêtes de San Fermín en Espagne. Chaque année, le 6 juillet, environ 5 000 personnes se rassemblent Plaza Consistorial, à Pampelune, pour la cérémonie du « Chupinazo », qui marque le début d’une semaine de fêtes. La densité atteint environ 6 personnes par mètre carré !
Cette place, qui mesure 50 mètres de long par 20 mètres de large, est délimitée par des immeubles de plusieurs étages, dont les balcons donnent une vue imprenable sur ce qui se passe sur la place. Nous avons filmé lors de quatre éditions avec huit caméras placées sur deux balcons les mouvements de la foule avec une très bonne résolution. Nous avons ainsi collecté un jeu de données unique au monde pour l’étude des foules denses.
Tous les quinze jours, de grands noms, de nouvelles voix, des sujets inédits pour décrypter l’actualité scientifique et mieux comprendre le monde. Abonnez-vous gratuitement dès aujourd’hui !
La foule oscille en synchronie
Grâce à une technique utilisée, par exemple en aérodynamique, nous avons pu cartographier les vitesses de déplacement dans la foule, comme on suit des courants d’air autour d’un avion. Nous en avons extrait que tous les individus dans un rayon d’environ 10 mètres se déplaçaient dans la même direction.
Lors du « Chupinazo », la densité de personnes est très importante, de l’ordre de six personnes par mètre carré : il faut donc imaginer environ 500 personnes entraînées ensemble de façon spontanée, ce qui représente une masse de plusieurs dizaines de tonnes en mouvement.
Nous avons également montré que la direction du mouvement de cette masse tournait progressivement, avant de revenir à son point de départ, toutes les 18 secondes. Autrement dit, les individus ne se déplacent pas de manière chaotique, mais suivent des trajectoires quasi circulaires et périodiques.
Ce mouvement lent s’explique par le fait que ce ne sont pas des individus isolés qui bougent, mais plusieurs centaines, entraînés les uns avec les autres.
Enfin, nous avons observé que les mouvements circulaires oscillants de la foule se font autant dans le sens des aiguilles d’une montre que dans le sens inverse, alors même que la majorité des êtres humains sont droitiers ou qu’ils ont tendance à s’éviter par la droite dans les pays occidentaux. Les facteurs cognitifs et biologiques ne sont donc plus pertinents pour expliquer le déplacement des masses d’individus dans les foules denses qui sont entraînées dans des mouvements à très grande échelle.
Prenez un piéton au sein de cette foule. Il subit des forces qui le mettent en mouvement. Ces forces peuvent avoir une origine physique – comme des forces de contact avec un mur ou un autre piéton – ou une origine cognitive – comme lorsqu’on cherche à éviter un autre piéton. Malheureusement, la modélisation mathématique de ces forces repose sur de nombreuses hypothèses invérifiables sur le comportement des individus, ce qui rend cette approche irréalisable.
Il n’est en réalité pas nécessaire de décrire la dynamique de chaque individu pour prédire la dynamique de la foule. Prenez l’écoulement de l’eau dans un tuyau : les lois de la physique permettent de prédire l’écoulement de l’eau, alors même que déterminer la force subie par une seule molécule d’eau dans cet écoulement s’avère impossible.
Nous avons donc déterminé l’équation qui décrirait le mouvement d’une masse d’individus entraînés tous ensemble, sans déterminer les lois qui régissent le mouvement d’un seul piéton. Notre démarche n’utilise que des principes fondamentaux de la physique (conservation de la masse, conservation de la quantité de mouvement) et ne fait aucune hypothèse comportementale sur le mouvement des individus. Elle nous a permis de construire un modèle mathématique dont la résolution a montré un excellent accord avec les observations expérimentales.
Une nouvelle méthode de prévention des accidents de foule ?
Nous avons également analysé des vidéos issues des caméras de surveillance de la Love Parade de 2010 à Duisbourg, en Allemagne. Bien que cette foule soit très différente de celle du « Chupinazo », nous y avons observé les mêmes oscillations collectives. Cela suggère que ce comportement de masse est universel, indépendamment du type d’événement ou du profil des participants.
Comme nous l’avons souligné précédemment, ces oscillations peuvent mettre en mouvement plusieurs dizaines de tonnes. Nous pensons qu’un tel déplacement non contrôlé de masse peut devenir dangereux. Lors du « Chupinazo », aucun accident n’a jamais été signalé, sans doute parce que l’événement est court (une à deux heures) et que les participants y viennent de leur plein gré, avec une certaine conscience des risques. Ce n’était pas le cas lors de la Love Parade de 2010, où un accident a causé des dizaines de morts et des centaines de blessés. Juste avant que l’accident ne se produise, nous avons détecté ces oscillations.
Cette détection peut se faire en temps réel, à partir d’une analyse directe et simple des caméras de vidéosurveillance. Et puisque cette dynamique est universelle, la même méthode pourrait être appliquée à d’autres foules. Ainsi, nos découvertes pourraient, dans le futur, inspirer le développement d’outils de détection et de prévention d’accidents de masse.
Ce travail a été soutenu par le Conseil européen de la recherche (ERC) dans le cadre du programme de recherche et d’innovation Horizon 2020 de l’Union européenne (convention de subvention numéro 101019141) (D.B.) et par la subvention numéro PID2020-114839GB-I00 soutenue par MCIN/AEI/10.13039/501100011033 (I.Z.).
Benjamin Guiselin ne travaille pas, ne conseille pas, ne possède pas de parts, ne reçoit pas de fonds d’une organisation qui pourrait tirer profit de cet article, et n’a déclaré aucune autre affiliation que son organisme de recherche.
Source: – By Pascal Brioist, Professeur des Universités. Spécialiste de Léonard de Vinci, des sciences et des techniques à la Renaissance, de l’Angleterre du XVIe et du XVIIe siècle., Université de Tours
Voler comme les oiseaux en battant des ailes, ou l’ornithoptère de Léonard de Vinci, conçu vers 1495.Copyright Artes Mechanicae., Fourni par l’auteur
Léonard de Vinci est incontesté comme peintre et comme inventeur, depuis la Joconde jusqu’à ses machines volantes. Ce que l’on sait moins, c’est qu’il a aussi proposé de nombreuses contributions en sciences et, de façon toujours aussi éclectique, a touché à la physique, à la géologie et à la botanique de son temps. Ces contributions montrent comment l’artiste toscan a pu accéder à des connaissances pointues bien qu’il ait été exclu des circuits traditionnels de diffusion des connaissances, en particulier de l’université.
Considéré par le philosophe Pierre Duhem, en 1900, comme le chaînon manquant entre la Science médiévale et la Science moderne, Léonard de Vinci a été depuis parfois jugé incapable d’avoir eu accès aux savoirs scientifiques et d’avoir été un piètre savant. En effet, sa naissance illégitime l’empêcha de fréquenter l’université (celle-ci était interdite aux enfants illégitimes). Certains experts ont même essayé de le cantonner au rôle de technicien et sont allés jusqu’à critiquer les machines qu’il dessina en soulignant qu’elles étaient de simples reprises de celles de prédécesseurs ou en les qualifiant d’impossibles.
Aujourd’hui cependant, l’examen attentif des écrits du Toscan prouve qu’au contraire, celui-ci avait trouvé des biais pour avoir accès à la culture qui lui était refusée et, mieux encore, avait été capable de remettre en cause par l’expérience des savoirs scolastiques – en trouvant des savants qui pouvaient lui expliquer ce à quoi il n’avait pas accès directement, par exemple le mathématicien Luca Piacioli pour accéder à Euclide, ou le médecin de Pavie Marcantonio della Torres pour comprendre les idées de Galien.
Dans le domaine de la technologie, certes, il s’inspirait d’ingénieurs médiévaux comme l’architecte Filippo Brunelleschi ou les ingénieurs le Taccola et Francesco di Giorgio, mais il les dépassa en inventant une méthode de réduction en art de la mécanique (qui consiste à avoir une approche analytique de la mécanique en identifiant sur le papier tous les éléments simples, comme les engrenages, cames, échappements, ressorts, pour pouvoir composer des combinatoires agençant ces éléments de machines), en perfectionnant le dessin technique et en s’inspirant du vivant pour des machines volantes.
Ainsi, il est à l’origine de grandes percées dans les domaines multiples dans lesquels il excella – même si ses textes restèrent manuscrits jusqu’en 1883, ce qui l’empêcha de léguer ses découvertes.
De l’observation du monde aux concepts de physique
Si l’on commence par la physique, celui qui n’avait été formé ni à l’aristotélisme, ni aux théories d’Archimède, fut tout de même capable, sur le tard, capable de se faire expliquer les principes de la science de l’antiquité (comme les quatre puissances de la nature : mouvements, poids, force et percussion) et de parcourir les traités de base en latin.
Ainsi, il était parfaitement au courant de la théorie de l’antipéristase et de celle, médiévale, de l’impetus. La première disait qu’un corps lancé continue à avancer parce que l’air qui est devant lui est propulsé derrière lui et alimente la poussée. Léonard récuse cette idée en acceptant le concept d’impetus : ce qui pousse le corps, c’est une qualité d’impulsion conférée au projectile. Léonard le démontre par une expérience où il tire avec une arquebuse dans une gourde (si l’antipéristase fonctionnait, l’eau de la gourde empêcherait la balle de poursuivre sa trajectoire, ce qui n’est pas le cas).
À propos d’un autre concept de physique, celui des frottements, Léonard prouve là encore par l’étude des faits que celui-ci est proportionnel non à la surface de contact mais au poids de l’objet.
Léonard, passionné par les tourbillons, explore aussi le champ de l’hydraulique et de l’aérodynamique, on lui doit l’intuition des turbulences, des vortex de surface et des vortex profonds, des tourbillons induits, etc.
Tous les quinze jours, de grands noms, de nouvelles voix, des sujets inédits pour décrypter l’actualité scientifique et mieux comprendre le monde. Abonnez-vous gratuitement dès aujourd’hui !
Dans le domaine de l’optique, Léonard s’inspire du mathématicien, physicien et médecin du XIe siècle Alhazen, de son vrai nom Ibn al-Haytham, est un auquel on doit une théorie moderne de l’optique, incluant des réflexions physiologiques sur l’œil, et l’introduction des mathématiques dans les sciences physiques. Grâce à la traduction d’Erasmus Vitello – Vitellion en français, un moine de Silésie du XIVe siècle, commentateur d’Alhazen et auteur d’un traité de perspective –, il étudie l’œil et les rayons lumineux qu’il considère comme émis par l’objet pour créer dans la rétine des simulacres.
Il construit même une « boîte noire » (ou camera obscura, sorte de caméra primitive) pour simuler ce phénomène.
Excellent cartographe, Léonard est aussi un remarquable géologue qui théorise le rôle de l’eau dans l’érosion, comprend les empilements de couches géologiques et explique l’origine des fossiles.
Enfant élevé à la campagne, il s’intéresse aussi à la botanique, dessinant toutes sortes de plantes mais cherchant aussi les règles de leur croissance. Le tableau de la Vierge aux Rochers constitue un véritable herbier virtuel.
L’anatomie, bien au-delà de l’« Homme de Vitruve »
Le domaine de l’anatomie est assurément celui où le maître est allé le plus loin. À partir de nombreuses lectures, il perfectionne les méthodes de dissection en collaborant avec des médecins de Florence, de Pavie (comme le galéniste Marcantonio Della Torre) et de Rome, produisant des dessins du corps et de ses parties d’une précision ahurissante.
Mieux encore, il découvre par des expérimentations le principe de la circulation du sang en tourbillons dans les valves aortiques, propose des interprétations du fonctionnement du système uro-génital, du système respiratoire ou du système digestif et étudie les relations du fœtus et de la matrice.
Pour comprendre l’anatomie du cerveau, et le lien entre les sens et la mémoire, il coule de la cire dans les cavités cérébrales et découpe des crânes.
Léonard et les mathématiques
C’est peut-être dans les mathématiques que Léonard fut le plus faible, malgré sa collaboration avec le Franciscain Luca Pacioli pour lequel il dessine les polyèdres de la Divina Proportione. Il n’empêche que les mathématiques ne cessent de l’inspirer et qu’il est convaincu que la nature est animée par des règles géométriques et arithmétiques.
L’approche scientifique de Léonard l’amène à produire un certain nombre de traités aujourd’hui perdus mais auxquels il fait souvent allusion comme un traité sur l’eau, un traité sur le vol des oiseaux ou un traité sur les éléments de machines.
Baigner dans les inspirations des ingénieurs de son temps
Si l’on n’a guère retenu les apports de Léonard dans les sciences, en revanche, son activité d’ingénieur et d’inventeur constitue un élément clé de sa légende.
Là encore, l’activité du Toscan témoigne d’une curiosité tous azimuts dans les arts mécaniques : grues et machines de chantiers, écluses et machines hydrauliques, machines textiles, machines de fonderie, pompes, machines de guerre, machines de théâtre, automates, machines volantes…
Le chimiste Marcelin Berthelot, au début du XXe siècle, fut le premier à s’apercevoir que bien des machines de Léonard étaient inspirées du Moyen Âge. Le principe du char d’assaut, par exemple, était déjà là dans le Bellifortis, de Konrad Kyeser (1366-1406), et bien des engins de siège proposés par Léonard de Vinci à Ludovic Sforza, dans une lettre de motivation, étaient décrits par Roberto Valturio en 1472 dans le De arte militari.
Le principe du parachute avait été aussi exposé dans un manuscrit siennois de la première moitié du XVe siècle.
En ce temps où la propriété intellectuelle n’est pas vraiment stabilisée, il est fréquent que les ingénieurs reprennent les idées de leurs prédécesseurs ou de leurs contemporains. Ainsi, une scie mécanique hydraulique d’ingénieurs siennois reprend des usages techniques de moines médiévaux, et Francesco di Giorgio des idées de Brunelleschi pour des navires à aubes.
Ainsi, les carnets de Léonard sont remplis de croquis d’engins de levage ou de bateaux à aubes de Brunelleschi, de moulins et d’engrenages de Francesco di Giorgio Martini ou encore de mécanismes d’horlogerie de Della Volpaia. Il n’est pas toujours facile d’attribuer l’invention d’une machine dessinée par Léonard à ce dernier car il copie ce qui l’entoure — ce qu’il concède volontiers, par exemple quand il dit qu’un dispositif anti-frottement pour les cloches lui a été suggéré par un serrurier allemand nommé Giulio Tedesco.
Certains chercheurs, hypercritiques, en ont conclu que Léonard n’avait jamais construit une seule machine. C’est aller trop vite en besogne car certaines machines sont attestées par plusieurs témoins – les ambassadeurs de Ferrare ou de Venise, ou encore des contemporains florentins : un lion automate, par exemple, un compteur d’eau, des ponts autoportants, des mécanismes de théâtre…
De plus, quand Léonard recommande à ses apprentis de se méfier des espions qui pourraient voir ses essais de machines volantes depuis le tambour de la cathédrale de Milan ou quand il reproche à des mécaniciens allemands d’avoir copié à Rome ses projets de miroirs incendiaires, il est évident qu’il parle d’artefacts concrets.
Pour autant, tous les schémas de projets n’ont pas nécessairement été réalisés ; ce que l’on devine lorsqu’on essaye de les reconstituer… et qu’ils ne fonctionnent pas (par exemple, les engrenages d’un char d’assaut qui feraient aller les roues arrière et avant de l’appareil en sens contraire).
De plus, des machines textiles (fileuses, métiers à tisser, batteuses de feuilles d’or, tondeuses de bérets) incroyablement sophistiquées présentent des problèmes de résistance des matériaux qui rendent leur survie improbable.
Les apports effectifs de Léonard aux technologies du XVᵉ siècle
L’apport de Léonard de Vinci aux technologies est d’abord une approche méthodologique. Ainsi par exemple, dans son Traité des éléments de machines, le Toscan s’est attaché à réduire la mécanique en éléments simples (leviers, manivelles, vis, cames, ressorts, échappements, engrenages, etc.) pour pouvoir en mathématiser les effets et élaborer des combinatoires. Tout est alors question de timing, par exemple pour les fileuses automatiques, les métiers à tisser, les batteurs d’or, les machines à tailler les limes ou les polisseurs de miroirs. Vitesse et puissance fonctionnent en proportion inverse et le chercheur s’émerveille des vertus des vis et des engrenages.
Son autre apport est une élaboration nouvelle du dessin technique combinant vue de dessus, vue de profil, axonométries et éclatés.
Enfin, Léonard étonne par son investigation de domaines nouveaux, comme le vol, utilisant l’observation de la nature pour trouver des solutions mécaniques à des problèmes inédits.
Les limites du travail de Léonard sont évidentes – en mathématiques, par exemple – mais contrairement à ce que disent les critiques qui soulignent les déficiences de sa formation, elles l’amènent souvent à dépasser la tradition.
L’exposition « Léonard de Vinci et le biomimétisme, s’inspirer du vivant », dont Pascal Brioist est commissaire, est visible au Clos Lucé, à Amboise (Indre-et-Loire), du 7 juin au 10 septembre 2025.
Pour en savoir plus sur Léonard de Vinci et sa vie à contre-courant, le livre de Pascal BrioistLes Audaces de Léonard de Vinci, aux éditions Stock (2019).
Pascal Brioist a reçu des financements de la région Centre. J’ai reçu autrefois une APR pour un spectacle sur Marignan
Source: – By Éric Guilyardi, Directeur de recherche au CNRS, Laboratoire d’océanographie et du climat, LOCEAN, Institut Pierre-Simon Laplace, Sorbonne Université
Éric Guilyardi est océanographe et climatologue, spécialiste de modélisation climatique. Il s’intéresse tout particulièrement au phénomène climatique El Niño. Il a été auteur principal du 5e rapport du GIEC et a contribué au 6e. Il anime également une réflexion sur l’éthique de l’engagement public des scientifiques. Ce grand entretien, mené par Benoît Tonson, est l’occasion de mieux comprendre les liens entre l’océan et le climat et de réfléchir à la place du scientifique dans les médias et plus généralement dans la société, au moment où se tient la troisième Conférence des Nations unies sur l’océan (Unoc 3) à Nice.
The Conversation : Quels sont les liens entre le climat et l’océan ?
Éric Guilyardi : Le climat résulte de nombreuses interactions entre les composantes de ce que l’on appelle le « système Terre », dont l’atmosphère, l’océan, les surfaces continentales et la cryosphère (toutes les portions de la surface des mers ou terres émergées où l’eau est présente à l’état solide). L’océan est au cœur du système Terre car c’est son principal réservoir d’énergie. Les deux premiers mètres de l’océan contiennent en effet autant d’énergie que les 70 km de la colonne atmosphérique qui la surplombe ! Profond en moyenne de 4 000 mètres son immense inertie thermique en fait un gardien des équilibres climatiques. Par exemple, dans les régions au climat océanique, cette inertie se traduit par moins de variations de température, que ce soit dans une même journée ou à travers les saisons. L’océan est également un acteur des variations lentes du climat. Par exemple, le phénomène El Niño sur lequel je travaille, résulte d’interactions inter-annuelles entre l’océan et l’atmosphère qui font intervenir la mémoire lente de l’océan, située dans le Pacifique tropical ouest, vers 400 mètres de profondeur. Allant chercher une mémoire plus en profondeur, l’océan est également source de variations lentes qui influencent le climat depuis l’échelle décennale (mémoire vers 1 000 mètres de profondeur) jusqu’à des milliers d’années (entre 2 000 et 4 000 mètres).
L’océan joue un rôle fondamental dans le changement climatique, à la fois parce qu’il permet d’en limiter l’intensité, en absorbant à peu près un quart des émissions de carbone que l’activité humaine envoie dans l’atmosphère (via la combustion des énergies fossiles).
L’océan est donc notre allié, puisqu’il permet de limiter les impacts du changement climatique, mais il en subit également les conséquences. Sous l’effet de l’augmentation de la température, l’eau se dilate, elle prend plus de place et le niveau de la mer monte. La moitié de l’augmentation du niveau marin global (4 mm/an et environ 20 cm depuis 1900) est due à cette dilatation thermique. L’autre vient de la fonte des glaciers continentaux (en montagne, mais aussi de la fonte des calottes polaires en Antarctique et au Groenland).
Tous les quinze jours, de grands noms, de nouvelles voix, des sujets inédits pour décrypter l’actualité scientifique et mieux comprendre le monde. Abonnez-vous gratuitement dès aujourd’hui !
Dans le couple océan-atmosphère, l’atmosphère c’est un peu le partenaire nerveux, qui va vite : une dépression, qui se crée par exemple au nord du Canada, traverse l’Atlantique, arrive en Europe et disparaît au-dessus de la Sibérie aura une durée de vie de quelques semaines. Les structures équivalentes dans l’océan sont des tourbillons plus petits mais plus lents qui peuvent rester cohérents pendant des années, voire des dizaines d’années.
Vous avez commencé à évoquer El Niño, qu’est-ce que c’est ?
É. G. : Ce sont les pêcheurs sud-américains qui ont donné le nom d’El Niño a un courant chaud qui est présent tous les ans au moment de Noël le long des côtes du Pérou et du Chili (d’où « l’Enfant Jésus », El Niño en espagnol). Le reste de l’année, et en « année normale », des eaux froides et riches en nutriments remontent des profondeurs, faisant de cette région une des plus poissonneuses de la planète.
Mais certaines années, le courant chaud reste toute l’année – cela devient une année El Niño et la pêche s’arrête, un signal que l’on retrouve dans les registres de pêche depuis des siècles.
Alors qu’est-ce qu’il se passe ? Dans le pacifique, les années « normales » (Fig. 1), des alizés soufflent d’est en ouest. Ces vents font remonter des eaux froides venant des profondeurs à la fois le long de l’équateur, dans l’est, mais aussi le long des côtes du Pérou et du Chili. L’eau chaude des tropiques s’accumule à l’ouest, autour de l’Indonésie et du nord de l’Australie.
Schéma de la différence entre une année normale et une année El Niño. La thermocline est la zone sous-marine de transition thermique rapide entre les eaux superficielles (chaudes) et les eaux profondes (froides). Fourni par l’auteur
Certaines années, des anomalies peuvent perturber ce système. Cela peut venir d’une anomalie de température vers le centre du Pacifique, par exemple sous l’effet de coup de vent d’ouest, des vents qui vont contrer les alizés pendant un moment. Si on a moins de différence de température, on a moins d’alizés, donc moins de remontée d’eaux froides. De l’eau plus chaude va s’étendre dans l’est et amplifier l’anomalie initiale. Le système s’enraye, les alizés s’affaiblissent et des anomalies de température de plusieurs degrés Celsius apparaissent dans d’immenses régions du Pacifique central et du Pacifique Est. Ces perturbations vont durer un an et c’est ce que l’on appelle un événement El Niño.
Aujourd’hui, on comprend bien les mécanismes de base de ce phénomène, on sait prévoir les impacts pour le bassin pacifique ainsi que pour les nombreuses régions de la planète que El Niño influence. On sait que l’anomalie se produit à intervalles irréguliers (tous les trois à sept ans). Le dernier a eu lieu en 2023-2024.
On parle également de La Niña, qu’est-ce que c’est ?
É. G. : C’est la petite sœur d’El Niño, dont les impacts sont en miroir puisque l’on assiste à des anomalies froides dans le Pacifique central et Est, liées à des alizés plus forts, au lieu d’anomalies chaudes. On peut la décrire comme une année normale avec des alizés plus forts. Ce n’est pas un miroir parfait car El Niño a tendance à être plus fort et La Niña plus fréquent.
Depuis quand travaillez-vous sur ce sujet ?
É. G. : J’ai d’abord fait une thèse sur les échanges océan-atmosphère à partir du milieu des années 1990. À cette époque, il n’existait pas encore de modèle climatique global en France. On en avait un qui simulait l’atmosphère, et un autre, l’océan. Mon premier travail a donc consisté à « coupler » ces deux modèles. J’ai commencé à m’intéresser au phénomène El Niño lors d’un postdoctorat dans un laboratoire d’océanographie (le LODYC, ancêtre du LOCEAN). J’ai poursuivi mes recherches à l’université de Reading en Grande-Bretagne avec des spécialistes de l’atmosphère tropicale. En effet, pour comprendre El Niño, il faut s’intéresser à la fois à l’atmosphère et à l’océan. À cette époque, je développais des simulations informatiques et j’analysais comment ces simulations représentaient le phénomène El Niño.
On a vraiment assisté à de grandes avancées depuis les années 1990. Non seulement nous arrivons à représenter El Niño dans ces modèles, mais la prévision saisonnière opérationnelle permet aujourd’hui de prévoir El Niño six neuf mois à l’avance. C’est-à-dire qu’on a suffisamment bien compris les mécanismes et que nous disposons d’un réseau d’observation de qualité.
Une des découvertes à laquelle j’ai contribué, à la fois importante et étonnante, a été de démontrer le rôle prépondérant de l’atmosphère dans la définition des caractéristiques d’El Niño. Pendant longtemps, nous avons considéré qu’un phénomène qui arrive tous les 3 à 7 ans était principalement une question d’océan et d’océanographe, car liée à la mémoire lente de l’océan.
Grâce à des modèles toujours plus précis, nous nous sommes en fait rendu compte que l’atmosphère jouait un rôle dominant, en particulier à travers le rôle des vents, des flux de chaleur, de la convection atmosphérique et des nuages associés.
Pourquoi est-ce si important d’étudier ce phénomène en particulier ?
É. G. : El Niño est la principale anomalie interannuelle du climat à laquelle les sociétés et les écosystèmes doivent faire face. On a vu l’impact sur la pêche au Pérou ou au Chili. Aujourd’hui, la décision d’armer ou non les flottes de pêche de ces pays dépend des prévisions saisonnières d’El Niño, d’où leur importance.
Il y a d’autres impacts liés à ce que nous appelons des « téléconnections », c’est-à-dire des sortes de ponts atmosphériques qui connectent les anomalies du Pacifique tropical aux autres régions du globe, en particulier dans les tropiques. Par exemple, en Indonésie, une année El Niño particulièrement marquée peut diviser la récolte de riz par deux. Il y a aussi de nombreux impacts en l’Afrique, en particulier en Afrique de l’Est : des inondations pendant El Niño, des sécheresses pendant La Niña, avec des impacts humanitaires très sévères dans des pays déjà vulnérables. Les agences humanitaires utilisent aujourd’hui les prévisions saisonnières pour pouvoir anticiper ces événements extrêmes et leurs impacts. Il y a aussi des impacts en Californie, qui voit ses précipitations augmenter pendant El Niño et diminuer pendant La Niña, amplifiant les impacts de la sécheresse liée au changement climatique.
On lie souvent ces événements extrêmes au changement climatique, peut-on faire un lien direct entre El Niño et le changement climatique ?
É. G. : Il y a trois aspects à retenir sur les liens avec le changement climatique : l’un avéré, un autre qui est une question de recherche et enfin un aspect trompeur. Celui qui est avéré vient du fait qu’une atmosphère plus chaude contient plus d’humidité. Donc quand il pleut plus, il pleut encore plus du fait du réchauffement climatique. Pendant El Niño, il y a par exemple des précipitations intenses dans certaines régions qui étaient plutôt sèches, par exemple le Pacifique central ou les côtes du Pérou et du Chili. Il y en a d’autres en Afrique centrale et de l’est, comme nous l’avons vu aussi. Donc ces événements extrêmes vont être plus extrêmes du fait du réchauffement climatique. Ce premier aspect est bien documenté, en particulier dans les rapports du GIEC.
La seconde question qui se pose est de savoir si El Niño lui-même va changer. Est-ce que son intensité, sa fréquence, sa localisation vont évoluer ? Cela reste une question de recherche. Il y a une série d’études basées sur des résultats de modélisation qui suggère que la fréquence des événements les plus forts pourrait augmenter. Mais il faut rester prudent car ces simulations numériques, fiables à l’échelle saisonnière, ont encore des biais à plus long terme. Il reste de nombreuses questions dont la communauté scientifique s’empare avec énergie.
Enfin, l’aspect trompeur est de penser qu’El Niño accélère le changement climatique. C’est d’abord une confusion d’échelle de temps : El Niño modifie la température planétaire d’une année sur l’autre alors que le réchauffement la modifie dans le temps long (décennies). Ensuite, il est arithmétiquement compréhensible qu’El Niño modifie la température moyenne car le Pacifique tropical représente un quart de la surface de la planète. Mais cela ne veut pas dire que la température augmente de façon durable sur le reste du globe. La focalisation de la communication climatique sur la température moyenne annuelle et d’éventuels records une année particulière encourage cette confusion.
Comment prévoit-on El Niño ?
É. G. : Aujourd’hui les systèmes de prévisions opérationnels, par exemple à Météo-France ou au Centre européen de prévision à moyen terme en Europe ou à la NOAA aux USA, prévoient ce phénomène environ 6 à 9 mois à l’avance. Un réseau d’observation couvre le Pacifique tropical composé essentiellement de bouées fixes et dérivantes et de satellites. Ce réseau permet de mesurer la température, les courants et les autres paramètres qui vont permettre d’établir avec précision l’état actuel de l’océan qui est la base d’une prévision de qualité. On va ainsi pouvoir détecter l’accumulation de chaleur dans le Pacifique Ouest, qui se traduit par une anomalie de température de plusieurs degrés vers 300 mètres de profondeur, et qui est un précurseur d’El Niño.
Cette condition nécessaire n’est pas suffisante car il faut un déclencheur, en général une anomalie de vent d’Ouest en surface. Le fait que celle-ci soit plus difficile à prévoir explique la limite de prévisibilité à 6 à 9 mois.
Par exemple, en 2014, Le système était rechargé en chaleur en profondeur et les prévisions indiquaient une forte probabilité d’El Niño cette année-là… qui n’a pas eu lieu car l’atmosphère n’a pas déclenché l’événement. Il a fallu attendre 2015 pour avoir El Niño et évacuer cette chaleur accumulée vers les plus hautes latitudes.
Les enjeux de recherche actuels, issus des besoins de la société, sont de prévoir plus finement le type d’El Niño. Va-t-il être plutôt fort ou plutôt faible ? Sera-t-il localisé plutôt dans l’Est du Pacifique ou plutôt dans le centre ? Les enjeux de prévision sont importants puisque les impacts ne seront pas les mêmes.
On le voit, vos travaux ont un impact sur certaines grandes décisions politiques, vous avez fait partie des auteurs du cinquième rapport du GIEC, cela vous a également exposé au système médiatique, comment l’avez-vous vécu ?
É. G. : J’ai d’abord pensé qu’il était important de partager ce que nous scientifiques savons sur le changement climatique, donc j’y suis allé. Sans être forcément très préparé et cela a pu être un peu rock’n’roll au début ! Ensuite, grâce à des media training, j’ai mieux compris le monde des médias, qui a des codes et des temporalités très différents de ceux du monde de la recherche. Depuis, les sollicitations viennent en fait de toute part, elles ne sont pas que médiatiques. En ce qui me concerne, j’ai décidé de principalement m’investir dans l’éducation, à travers la présidence de l’Office for Climate Education, qui a pour mission d’accompagner les enseignants du primaire et du secondaire pour une éducation au climat de qualité et pour toutes et tous. C’est un engagement qui fait sens.
Je suis également engagé dans une réflexion sur le rôle du scientifique dans la société. Nous avons créé un groupe de réflexion éthique au sein de l’Institut Pierre-Simon Laplace pour échanger collectivement sur ces enjeux science-sociéte et les différentes postures possibles.
Cette réflexion était essentiellement individuelle ou faite entre deux portes dans les couloirs de nos laboratoires. Les enjeux sont tels que nous avons décidé de nous en emparer collectivement. Cela m’a amené å rejoindre le Comité d’éthique du CNRS pour lequel j’ai co-piloté un avis sur l’engagement public des chercheurs. « L’engagement public », c’est quand un chercheur s’exprime publiquement en tant que chercheur pour pousser à l’action (par exemple une biologiste qui dit « vaccinez-vous » ou un climatologue qui suggère de moins prendre l’avion). C’est donc différent de la médiation ou de la communication scientifique qui n’ont, en général, pas cet objectif « normatif ». L’engagement public ainsi défini ne fait pas partie de la fiche de poste des chercheurs, mais c’est important que des scientifiques puissent le faire. Car si ce n’est pas eux qui interviennent dans le débat public, ce sera peut-être des personnes avec moins d’expertise.
Mais n’est-ce pas un risque pour le chercheur de s’engager ainsi ?
É. G. : Si bien sûr ! Un risque pour sa réputation académique, pour l’image de son institution, voire même pour l’image de la recherche. Pour le faire de façon sûre et responsable, il faut donc avoir conscience des valeurs que porte un tel engagement et en faire état. Car l’expression publique, même d’un chercheur, n’est pas neutre. Les mots que l’on va choisir, le ton de sa voix, la façon de se présenter, portent un récit et donc des valeurs. Clarifier ces valeurs personnelles pour ne pas tromper son auditoire, le laissant croire à une prétendue neutralité, a aussi l’avantage de ne pas risquer d’être perçu comme militant.
C’est un travail d’acculturation nouveau pour notre communauté, que d’autres sciences pratiquent depuis plus longtemps, comme les sciences médicales. Nous devons collectivement mieux comprendre la société et ses ressorts pour n’être ni naïfs, ni instrumentalisés, et rester pertinents. Il faut par exemple être particulièrement vigilant avec des porteurs d’intérêts privés (entreprises, ONG, partis politiques) qui peuvent vouloir chercher une forme de légitimation de leur agenda auprès des chercheurs.
Qu’est-ce qui a changé dans votre pratique des médias après toutes ces réflexions ?
É. G. : Tout d’abord, j’interviens nettement moins dans les médias. Les journées n’ont que 24 heures et je me suis rendu compte que ma valeur ajoutée n’était pas très élevée, l’angle de l’interview étant la plupart du temps décidé à l’avance. De plus, la pression sur les journalistes rend l’expression d’une nuance très difficile. L’injonction à prendre parti entre deux positions extrêmes me semble stérile même si je comprends que cela puisse faire de l’audimat.
J’ai joué ce jeu pendant un temps, mais j’ai fini par me rendre compte que je participais à un récit essentiellement catastrophiste et que mes tentatives de nuances étaient vaines. Et je ne parle même pas des réseaux sociaux, avec leurs algorithmes conçus pour polariser, que je ne pratique donc pas. Ce type de récit d’alerte a sans doute eu son utilité mais je suis convaincu qu’il est aujourd’hui contre-productif. Je suis aussi de plus en plus gêné quand on me tend le micro pour me demander ce qu’il faudrait faire. On entend souvent le message : « on connaît les solutions mais on ne les met pas en œuvre parce que, soit l’on n’écoute pas assez les scientifiques, soit il y a des “méchantes” entreprises, soit il y a des politiques incompétents ». Mais je ne suis pas sûr qu’il y ait des solutions clairement identifiées. Pour moi, le défi environnemental (climat, biodiversité, pollution) est comme la démocratie ou les droits de l’Homme, il n’y pas de solutions mais une attention de tous les instants, une réflexion démocratique sur le monde que nous voulons, le niveau de risque acceptable, le niveau d’inégalités acceptable, etc. C’est une discussion essentiellement politique, au sens noble du terme, dans laquelle l’avis des scientifiques n’a pas plus de poids que celui de chaque citoyen. Trop donner la parole aux scientifiques (ce que vous faites dans cet interview !) c’est risquer de dépolitiser des enjeux essentiels et ouvrir la porte à un backlash des populations.
D’où l’importance de l’éducation, pour bien percevoir la complexité des enjeux, bien différencier les registres de connaissance (scientifique, croyances, valeurs…), comprendre les liens et l’articulation entre les différents défis, et éviter ainsi de tomber dans des visions étroites du monde ou de l’avenir, forcément angoissantes. Le sentiment simpliste qu’il y aurait des solutions peut aussi générer de la colère envers les dirigeants qui ne les mettraient, donc, pas en œuvre.
Que proposez-vous pour avancer ?
É. G. : Tout d’abord retrouver de la nuance, de la complexité, affirmer haut et fort qu’il n’y a pas que le climat et la température moyenne de la Terre dans la vie, apprendre à préparer l’avenir positivement. Il y a 17 objectifs du développement durable qui sont autant de sources de malheur humain. A mes yeux de citoyen, il n’y en a pas un qui serait plus important ou plus urgent que les autres. Les éventuelles priorités dépendent de la société que nous voulons, du niveau de risque acceptable et sont donc ancrées localement et culturellement. Regardez comment les différents pays ont fait des choix politiques très différents face au même virus pendant le Covid ! Placer le débat d’abord au niveau du monde que nous voulons, c’est faire un grand pas en avant, même si le chemin reste long.
On me traite souvent « d’optimiste » face à tous ces défis. Mais en fait, pour moi, la période que nous vivons est passionnante ! Nous sommes face à une transition majeure, rare dans l’histoire de l’humanité. Oui c’est vrai, et il ne faut pas se voiler la face, cette transition aura son lot de risques et de malheurs et il y a des intérêts du monde ancien qui résisteront longtemps et farouchement. Mais un nouveau monde de possibles s’ouvre à nous – c’est terriblement excitant, en particulier pour les jeunes !
Éric Guilyardi est membre du Comité d’éthique du CNRS et du Conseil scientifique de l’Éducation nationale. Il est aussi président de l’Office for Climate Education et expert auprès de l’UNESCO et de l’OCDE.
Source: – By Sabrina Speich, Professeure en océanographie et sciences du climat, École normale supérieure (ENS) – PSL
Quand on parle de réchauffement climatique, on pense souvent à l’air qui se réchauffe. Mais c’est l’océan qui, grâce aux courants marins et aux propriétés exceptionnelles de l’eau, a jusqu’à présent absorbé frontalement une grande partie du réchauffement. Avec l’accélération du changement climatique, la perte de biodiversité et la pollution omniprésente, les observations océaniques sont indispensables pour évaluer et préserver la santé des océans.
Au cours des trois dernières décennies, les développements technologiques et la coordination des observations de l’océan à l’échelle mondiale, sous l’égide de l’Unesco, ont révolutionné notre compréhension des processus océaniques, permettant des descriptions et des capacités de prévision robustes à l’échelle planétaire, régionale et côtière. Néanmoins, à l’heure où s’ouvre à Nice la troisième conférence internationale des Nations unies pour les océans (Unoc 3), il est urgent de pérenniser les moyens scientifiques de la surveillance de l’océan et de retisser les liens entre sciences et société.
Depuis les années 1960, le domaine de l’observation des océans a été transformé par d’importantes avancées technologiques et numériques. La transition vers une approche globale de surveillance de la santé de l’océan s’est fait grâce à l’émergence d’instruments in situ déployés en mer et de satellites qui permettent d’observer la Terre depuis l’espace, et grâce à l’amélioration des modèles numériques.
Progressivement, les scientifiques du monde entier ont su mettre l’océan à cœur ouvert. Aujourd’hui, les scientifiques sont unanimes : le changement climatique est bien en cours, et il a des conséquences dramatiques sur l’état de santé d’un océan qui a déjà absorbé 90 % de l’excès de chaleur et 26 % des émissions de CO₂ dus à nos activités humaines. Par exemple, une eau plus acide et plus chaude menace les écosystèmes marins comme les coraux, les coquillages et toute la chaîne alimentaire océanique.
Quatre des neuf limites planétaires impliquent l’océan. CGDD 2023
L’océan est le pilier de la machine climatique
Le système climatique, alimenté en énergie par le soleil, est principalement composé de réservoirs et de flux entre ces réservoirs. La planète Terre compte ainsi trois grands compartiments que sont l’atmosphère, les surfaces continentales et les océans. Les flux entre ces réservoirs sont principalement des flux de matières, d’énergie et de chaleur.
Les océans ne forment qu’un, connectés entre eux au pôle Sud par l’intermédiaire de l’anneau austral qui encercle le continent antarctique. Cet océan est l’unique enveloppe fluide de notre planète, couvrant plus des deux tiers de la surface du globe et représentant près de 96 % de l’eau disponible sur Terre. L’océan et l’atmosphère sont en contact permanent et les échanges air-mer se font principalement sur la base du cycle de l’eau, par exemple lors des précipitations ou de l’évaporation de l’eau de mer. Ces échanges continus permettent l’équilibre du système climatique par la redistribution des flux et l’installation des différentes conditions climatiques dans chaque région du monde.
En particulier, la chaleur et le CO2 atmosphériques sont absorbés par l’océan à l’interface air-mer, puis transportés et redistribués sur le globe grâce aux courants marins et à l’activité biologique marine. Cette circulation s’effectue dans chacun des bassins océaniques, du nord au sud et d’ouest en est. Mais elle est aussi verticale, entre la surface et les très grandes profondeurs marines. Sa profondeur moyenne de 3 800 mètres fait de l’océan un immense réservoir de chaleur doté d’une très forte inertie thermique, du fait des propriétés physiques de l’eau.
Par la capacité de ses courants marins à absorber, à transporter puis à stocker dans ses plus grandes profondeurs les signaux atmosphériques et les nombreux flux provenant des autres réservoirs, l’océan joue un rôle clé dans les mécanismes climatiques globaux et dans l’équilibre planétaire. Il est un des piliers du système climatique, de sorte que les scientifiques le qualifient de « thermostat de la planète ».
Un océan à cœur ouvert grâce au système global d’observation des océans, sous l’égide de l’Unesco
Pour comprendre le système climatique, les scientifiques se basent sur la combinaison de trois types d’observations océaniques :
les mesures in situ, collectées en mer et qui fournissent des données détaillées sur les couches sous-marines pour surveiller la variabilité des océans en profondeur et les changements à long terme ;
les observations par satellite, offrant une couverture spatiale étendue des premiers mètres de la surface océanique pour suivre l’élévation du niveau de la mer, la couleur des océans, la température et la salinité de surface ou encore la productivité primaire marine ;
les modèles numériques et l’assimilation des données qui synthétisent les observations afin de décrire l’évolution passée, présente et future des océans.
Aujourd’hui, les observations océaniques englobent un large éventail de paramètres physiques (température, salinité…), biogéochimiques (oxygène, carbone dissous…) et biologiques (phytoplancton, zooplancton…) essentiels à l’évaluation du climat, à la gestion des ressources marines et aux systèmes d’alerte précoce. Elles sont la seule source fiable d’informations sur l’état des océans et du climat, et viennent améliorer et valider les modèles numériques pour affiner leurs prévisions.
Le Global Ocean Observing System (GOOS), programme international créé au début des années 1990 après la deuxième Conférence mondiale sur le climat de Genève et le Sommet de la Terre à Rio de Janeiro, coordonne l’observation et la surveillance de l’océan à l’échelle de la planète. Son objectif est de mieux comprendre l’état de l’océan, prévoir son évolution et soutenir la prise de décisions face aux enjeux climatiques, environnementaux et sociétaux.
Il fonctionne comme un réseau mondial intégré d’observations océaniques, combinant des données issues de satellites, de bouées, de flotteurs profilants (comme le programme Argo), de navires et de stations côtières.
Les données collectées par le réseau d’observations coordonnées par GOOS sont gratuites et ouvertes, accessibles non seulement aux chercheuses et chercheurs, mais aussi aux actrices et acteurs de la société civile, aux entreprises, aux collectivités locales et à toute organisation impliquée dans la gestion ou la protection de l’océan. Ces informations sont essentielles pour surveiller la santé des écosystèmes marins, anticiper les événements extrêmes, soutenir les politiques climatiques et favoriser une économie bleue durable.
Tous les quinze jours, de grands noms, de nouvelles voix, des sujets inédits pour décrypter l’actualité scientifique et mieux comprendre le monde. Abonnez-vous gratuitement dès aujourd’hui !
Renforcer l’observation des océans pour éclairer les politiques climatiques et la gestion des écosystèmes marins
Un système complet d’observation des océans tel que le GOOS répond à de multiples besoins sociétaux.
Comme nous l’avons vu, l’océan modère le réchauffement climatique, atténuant par conséquent les phénomènes météorologiques extrêmes. En améliorant la prévision des vagues de chaleur marines, des ondes de tempête, des proliférations d’algues nuisibles et des tsunamis, le GOOS contribue à l’initiative « Alertes précoces pour tous », lancée en 2022 par les Nations unies. Son objectif est simple et ambitieux : que chaque personne sur Terre soit protégée par un système d’alerte précoce d’ici 2027, un système qui diffuse des alertes claires et accessibles pour donner le temps de se préparer à l’arrivée d’un événement extrême.
Alors que plus de 90 % du commerce mondial dépend du transport maritime, que la pêche et l’aquaculture font vivre des milliards de personnes, une surveillance renforcée soutient également une économie bleue durable. En particulier, la gestion écosystémique, la planification des usages des océans et l’exploitation durable des ressources marines garantissent la résilience des écosystèmes tout en favorisant la croissance économique – en miroir du quatorzième objectif de développement durable (ODD 14) des Nations unies, « Conserver et exploiter de manière durable les océans, les mers et les ressources marines aux fins du développement durable ».
Le GOOS actuel constitue une infrastructure essentielle pour suivre l’état de l’océan et informer les politiques publiques. Mais il reste encore insuffisant pour répondre pleinement aux besoins liés à l’action climatique, aux prévisions opérationnelles, aux jumeaux numériques de l’océan ou à la gestion durable des océans et de leurs ressources.
Les efforts futurs doivent viser à maintenir et à renforcer les systèmes d’observation existants, tout en les étendant pour couvrir de manière plus complète l’ensemble des dimensions physiques, biogéochimiques et biologiques de l’océan.
renforcer les observations biogéochimiques et biologiques jusqu’ici moins nombreuses et peu systématiques ;
améliorer l’intégration des observations océaniques avec les services de prévision océaniques et climatiques afin de fournir des informations utiles et exploitables aux décideurs, aux acteurs économiques et aux communautés côtières.
Enfin, la pérennisation des financements pour les réseaux d’observation à long terme représente un défi majeur de la prochaine décennie. Sans un engagement durable, il sera difficile de maintenir, d’adapter et de faire évoluer ces infrastructures clés face à l’accélération des changements océaniques et climatiques.
Retisser le lien entre sciences et société pour relever les défis du XXIᵉ siècle
Au-delà de la recherche et de la politique, il est essentiel de sensibiliser à l’océan pour que la société soit mieux informée et consciente des liens entre la santé des océans, la stabilité du climat et le bien-être humain.
Pour cela, des initiatives d’observation mondiale, par exemple Adopt-A-Float ou Ocean Observers, invitent élèves, étudiants et communautés à suivre les instruments océanographiques et à contribuer à la surveillance environnementale.
Plus globalement, ouvrir les portes des laboratoires et mettre la science à la portée de tous est urgent.
À ce titre, la collaboration entre experts-scientifiques et journalistes portant l’information auprès du grand public est un véritable enjeu, en particulier dans le contexte actuel d’une société à la fois surinformée, mal informée et parfois désinformée.
Alors que des milliers de scientifiques sont au chevet de la santé de l’océan 24 heures sur 24 et 7 jours sur 7, l’évolution continue du GOOS, guidée par les progrès scientifiques et par les besoins politiques, jouera un rôle essentiel dans la construction d’un avenir durable et résilient pour les océans. Un système d’observation véritablement mondial et inclusif, soutenu par une gouvernance collaborative et une allocation équitable des ressources, sera essentiel pour relever les défis et saisir les opportunités du XXIe siècle.
Cet article a été co-écrit avec Carole Saout-Grit, physicienne océanographe, directrice du bureau d’études GlazeO et directrice de publication du média Océans Connectés.
Les projets EUREC4A-OA et SAMOC sont soutenus par l’Agence nationale de la recherche (ANR), qui finance en France la recherche sur projets. L’ANR a pour mission de soutenir et de promouvoir le développement de recherches fondamentales et finalisées dans toutes les disciplines, et de renforcer le dialogue entre science et société. Pour en savoir plus, consultez le site de l’ANR.
Sabrina Speich, professeure à l’Ecole Normale Supérieure de Paris, a reçu des financements de l’ANR, de Europe Horizon 2020, Europe Horizon 2030, et de l’European research Council. Elle est co-présidente du comité d’experts Ocean Observations for Physics and Climate du Global Ocean Obsrving System et du Global Climate Observing System sous l’égide des Nations Unies, de l’International Science Council et de l’Organisation Météorologique Mondiale. Ce travail n’est pas rémunéré. Elle fait partie de plusieurs “scientific advisory boards” internationaux d’instituts de recherche.
Source: – By Mickael Bonnefoy, Chercheur CNRS à l’Institut de Planétologie et d’Astrophysique de Grenoble, Université Grenoble Alpes (UGA)
Vue d’artiste du système YSES-1. On voit le système de l’extérieur, avec un effet de perspective, ce qui explique la petitesse de l’étoile sur le dessin. Au premier plan, l’exoplanète YSES-1 c qui est couverte de nuages de poussières de silicates. À l’arrière-plan, l’exoplanète YSES-1 b, plus proche de son étoile, est entourée d’un disque de matière où des exolunes peuvent se former.Ellis Bogat.
Une nouvelle étude, publiée aujourd’hui dans Nature, dévoile deux jeunes exoplanètes, dont l’une toujours en formation, au sein d’un système stellaire atypique.
Mickaël Bonnefoy, astrophysicien et co-auteur de l’étude, nous explique qui sont ces « bébés exoplanètes ».
Vous nous emmenez en voyage dans un système stellaire atypique, YSES-1. Pourquoi intrigue-t-il les scientifiques ?
M. B. : Le système YSES-1 est atypique dans le bestiaire exoplanétaire. Situé à plus de 300 années-lumière de nous, ce système 270 fois plus jeune que le système solaire se compose d’une étoile analogue à notre Soleil et de deux grosses planètes, respectivement de 14 et 6 fois la masse de Jupiter, qui est pourtant de loin la plus grosse planète du système solaire. Ces exoplanètes sont aussi très éloignées de leur étoile – sur des orbites 35 et 71 fois la distance Soleil-Jupiter.
Cette architecture exotique remet en perspective l’origine et les propriétés de notre propre système solaire. YSES-1 nous permet d’étudier les propriétés de plusieurs exoplanètes joviennes jeunes, des « bébés exoplanètes », au sein d’un seul et même système.
Quelles sont les observations que vous décrivez dans votre article ?
M. B. : Grâce au télescope spatial James-Webb, nous avons observé des poussières de silicates en suspension dans l’atmosphère de la planète la moins massive et la plus lointaine de l’étoile, YSES-1 c. Ces poussières ont été prédites il y a plusieurs décennies par les études théoriques, mais c’est seulement aujourd’hui, avec ce télescope spatial, que l’on peut les observer directement.
Nos données mettent également en évidence pour la première fois un disque autour de la planète la plus massive et la plus proche de l’étoile, YSES-1 b. Ce type de disque est bien différent des anneaux de Saturne. Il s’agit plutôt d’un « réservoir de matière » qui alimente l’atmosphère de cette planète toujours en train de se former.
C’est aussi le lieu de formation de possibles exolunes. Nous savons qu’il y a eu un disque de poussière similaire autour de Jupiter dans le passé, qui a donné naissance à ses lunes, dont Europe et Ganymède.
Tous les quinze jours, de grands noms, de nouvelles voix, des sujets inédits pour décrypter l’actualité scientifique et mieux comprendre le monde. Abonnez-vous gratuitement dès aujourd’hui !
Quel était votre but en pointant le télescope James-Webb sur ce système stellaire, déjà bien connu ?
M. B. : Nous souhaitions initialement étudier l’atmosphère de ces deux planètes et mettre en évidence leurs différences physiques (masse, température) pour comprendre comment elles ont pu se former.
En étudiant le système YSES-1, très jeune (16,7 millions d’années), on espérait mieux comprendre les origines de notre propre système solaire (4,5 milliards d’années).
Mais vous avez observé quelque chose que vous n’aviez pas prévu d’observer initialement ?
M. B. : Absolument. Jusqu’au lancement du télescope James-Webb, nous ne pouvions étudier la lumière des exoplanètes au-delà de 5 micromètres du fait de l’absorption de l’atmosphère terrestre à ces longueurs d’onde depuis le sol.
Grâce à la nouvelle fenêtre observationnelle offerte par ce télescope spatial, nous pouvons étudier la signature spectroscopique de nombreuses molécules et particules en suspension dans l’atmosphère de ces exoplanètes.
Ici, nous avons pu révéler la présence d’un disque autour de la planète la plus massive du système, qui cause un excès de flux dans l’infrarouge mis en évidence par ces observations. Ce disque est le lieu de formation possible d’exolunes similaires à celles formées autour de Jupiter. Ce disque sert également de réservoir de matière pour former l’enveloppe gazeuse de la planète.
Est-ce que vous avez répondu à vos questions initiales ? Comprend-on mieux aujourd’hui comment un tel système a pu se former, avec ses planètes très massives et très lointaines de l’étoile ?
M. B. : Non, finalement, l’étude n’aborde pas ces points en détail, mais se focalise plus sur les propriétés de l’atmosphère de l’exoplanète YSES-1 c et du disque de l’exoplanète YSES-1 b.
Quelles sont les questions qui sont ouvertes par votre étude ?
M. B. : La découverte d’un disque autour d’une des planètes et son absence sur l’autre planète dans un système d’un âge donné pose la question de la chronologie de la formation de ces planètes. Se sont-elles formées en même temps ? Un disque existait-il dans le passé autour de l’exoplanète la moins massive ? Il reste la possibilité qu’un tel disque soit toujours présent, mais invisible dans les observations actuelles : ce serait le cas s’il émet au-delà des longueurs d’onde de nos observations.
De nouvelles observations avec le télescope James-Webb dans une gamme de longueurs d’onde au-delà de 12 micromètres seront nécessaires pour clarifier ces questions ouvertes.
Au-delà, cette étude permet de caractériser pour la première fois quantitativement les propriétés des nuages de poussière dans l’atmosphère d’une exoplanète jovienne jeune. De nouvelles observations du système au-delà de 12 micromètres permettront de préciser la composition de cette poussière, qui est sans doute faite de plusieurs types de grains.
Les projets FRAME et MIRAGES sont soutenus par l’Agence nationale de la recherche (ANR), qui finance en France la recherche sur projets. L’ANR a pour mission de soutenir et de promouvoir le développement de recherches fondamentales et finalisées dans toutes les disciplines, et de renforcer le dialogue entre science et société. Pour en savoir plus, consultez le site de l’ANR.
Mickael Bonnefoy a reçu des financements de l’Agence Nationale de la Recherche (bourses ANR-20-CE31-0012 et ANR-23-CE31-0006).